Visual Programming (CS410)
Assignment # 1

 Total marks = 20

 Deadline Date = 31-10-2011
Please carefully read the following instructions before attempting the assignment.

Rules for Marking

It should be clear that your assignment would not get any credit if:

· The assignment is submitted after due date.

· The submitted assignment does not open or file is corrupt.

· The assignment is copied. Note that strict action would be taken if the submitted assignment is copied from any other student. Both students will be punished severely.

1) You should concern recommended books to clarify your concepts as handouts are not sufficient.
2) You are supposed to submit your assignment in .doc format. Any other formats like scan images, PDF, Zip, rar, bmp, docx etc will not be accepted

3) You are advised to upload your assignment at least two days before Due date.
4) This assignment file comprises of Two (2) pages.

5) Do not send the CPP file of your code, but paste the complete code in same document (.DOC) file in which you will solve other questions.

Important Note:

Assignment comprises of 20 Marks. Note that no assignment will be accepted after due date via email in any case (whether it is the case of load shedding or emergency electric failure or internet malfunctioning etc.). Hence, refrain from uploading assignment in the last hour of the deadline, and try to upload Solutions at least 02 days before the deadline to avoid inconvenience later on.

For any query please contact: CS410@vu.edu.pk
Q1 [Marks: 10]

How can you define a pair of mutually referential structures? Consider the following code

typedef struct {

int afield;

BPTR bpointer;

} *APTR;

typedef struct {

int bfield;

APTR apointer;

} *BPTR;

But the compiler doesn't know about BPTR when it is used in the first structure declaration.
Ans: The problem lies not in the structures or the pointers but the typedefs. First, give the two structures tags, and define the link pointers without using typedefs:

struct a {

int afield;

struct b *bpointer;

};

struct b {

int bfield;

struct a *apointer;

};

The compiler can accept the field declaration struct b *bpointer within struct a, even though it has not yet heard of struct b. (struct b is ``incomplete'' at that point.) Occasionally it is necessary to precede this couplet with the empty declaration

struct b;

To mask the declarations (if in an inner scope) from a different struct b in an outer scope.

After declaring the two structures using struct tags, you can then declare the typedefs separately:

typedef struct a *APTR;

typedef struct b *BPTR;
Alternatively, you can define the typedefs before the struct definitions, in which case you can use them when declaring the link pointer fields:

typedef struct a *APTR;

typedef struct b *BPTR;

struct a {

int afield;

BPTR bpointer;

};

struct b {

int bfield;

APTR apointer;

};

Q2 [marks: 10]

How can you declare a function that can return a pointer to a function of the same type? If you are building a state machine with one function for each state, each of which returns a pointer to the function for the next state.
Ans.

You can't quite do it directly. One way is to have the function return a generic function pointer, with some judicious casts to adjust the types as the pointers are passed around:
typedef int (*funcptr)();
 /* generic function pointer */

typedef funcptr (*ptrfuncptr)(); /* ptr to fcn returning g.f.p. */

funcptr start(), stop();

funcptr state1(), state2(), state3();

void statemachine()

{

ptrfuncptr state = start;

while(state != stop)

state = (ptrfuncptr)(*state)();

}

funcptr start()

{

return (funcptr)state1;

}

(The second ptrfuncptr typedef hides some particularly dark syntax; without it, the state variable would have to be declared as funcptr (*state)() and the call would contain a bewildering cast of the form (funcptr (*)())(*state)().)
