Visual Programming (CS410)
Assignment # 1

 Total marks = 20

 Deadline Date = 01-11-2011
Please carefully read the following instructions before attempting the assignment.

Rules for Marking

It should be clear that your assignment would not get any credit if:

· The assignment is submitted after due date.

· The submitted assignment does not open or file is corrupt.

· The assignment is copied. Note that strict action would be taken if the submitted assignment is copied from any other student. Both students will be punished severely.

1) You should concern recommended books to clarify your concepts as handouts are not sufficient.
2) You are supposed to submit your assignment in .doc format. Any other formats like scan images, PDF, Zip, rar, bmp, docx etc will not be accepted

3) You are advised to upload your assignment at least two days before Due date.
4) This assignment file comprises of Two (2) pages.

5) Do not send the CPP file of your code, but paste the complete code in same document (.DOC) file in which you will solve other questions.

Important Note:

Assignment comprises of 20 Marks. Note that no assignment will be accepted after due date via email in any case (whether it is the case of load shedding or emergency electric failure or internet malfunctioning etc.). Hence, refrain from uploading assignment in the last hour of the deadline, and try to upload Solutions at least 02 days before the deadline to avoid inconvenience later on.

For any query please contact: CS410@vu.edu.pk
Q1 [Marks: 10]

How can you define a pair of mutually referential structures? Consider the following code

typedef struct {

int afield;

BPTR bpointer;

} *APTR;

typedef struct {

int bfield;

APTR apointer;

} *BPTR;

But the compiler doesn't know about BPTR when it is used in the first structure declaration.
Q2 [marks: 10]

How can you declare a function that can return a pointer to a function of the same type? If you are building a state machine with one function for each state, each of which returns a pointer to the function for the next state.
