
A STRUCTURED APPROACH FOR EXTRACTING FUNCTIONAL
REQUIREMENTS FROM UNCLEAR CUSTOMERS

Mohammed A. Hagal, Omar M. Sallabi,

Faculty of Information Technology, Garyounis Univ. Benghazi, Libya
mohdhg@yahoo.com, osallabi@garyounis.edu

 ABSTRACT

Many challenges are facing the developers during
specification of the requirements for new systems. The
errors in the requirements that detected in last stages of
the system (such as implementation stage) will be very
expensive to correct because it may require rework
effort. Such errors sometime occur when customers do
not have ability to articulate their requirements or
developers make implementation compromises in order
to get working prototype rapidly which might cause
inappropriate design decisions and inefficient
algorithms. Thus, effective management of extracting
requirements is essential. In this paper we propose a
guideline approach consisting of some managed stages
aim to help in extracting precise software requirements.

Keywords: Software engineering, Requirement
engineering, UML, Prototyping.

1. INTRODUCTION
"Requirement is a condition or capability needed by the
user to solve a problem or achieve an objective" [1].
The marketing culture indicates that the developer
should work on gaining customer confidences and
keeping them in touch through giving services that are
compatible with their requirements. The marketing
thought focuses on viewing the services through the
customer point of view and then manipulated through
customer's acceptance of the requirements and justify
customer needs.
System developing is an interacting and complementary
operation, characterized by close connection and direct
relation between the developer and the customer and it
focuses on the quality, precisely, completing the
information that interacted between them which is
considered as the important element for identifying the
customer needs.

Often, the customer and the developer may face
some difficulties in identifying and clarifying the
customer requirements precisely, as a result from the
miscommunication between them, which affects
generating clear requirements. To establish good
communication between the developer and the
customer, the understanding and clarification of the
customer requirements precisely is required.
Therefore, the need for a guideline approach that
organizes and manages user requirements in the
form that simplifies the customer requirements by
narrowing and bridging the gap that may result
between the customer and the developer.
In this paper we propose an approach consisting of
some managed stages aimed to generate precise
software requirements. These stages are named as
preparation stage, initial extracting stage, and the
enhancement of the initial extraction stage which is
the refinement of the initial extracting stage.

2. BACKGROUND
Requirements elicitation is often one of the
challenges that lead to system failures, because it is
usually incomplete, unambiguous, too many
requesters and different views of different users, etc.
In addition to these, many authors focus on analysis
quickly without focusing deeply on elicitation [2].
Furthermore, most elicitation problems are caused
by problems of scope, problems of understanding or
problems of volatility [3]. Some research has been
carried out on software risks which may trend to
software failure because the shortage of defining the
precise dependability and traceability of software
requirements [4, 5]. To overcome the above
mentioned reasons, many researchers attempt to
find/define techniques to solve these problems.

Many researchers have proposed that prototyping can be
considered as useful technique; especially in elicitation
to avoid the risk that is caused from misunderstanding
of both (developers and customers).
Prototyping is useful for risk assessment and as a means
for validation of customer requirements. There are
many well known and commonly used approaches to
prototyping such as throwaway versus evolutionary [1],
horizontal versus vertical [6], textual versus visual, and
executable versus non-executable prototypes.
Most of the available literatures on prototyping are
conceptual and there exists a lack of empirical studies to
provide a comprehensive evaluation of prototyping
approach based on the field experience. Prototyping
approach, however, is not free from weaknesses[7].
Oshiro, Watahiki and Saeki [8] proposed a method for
Requirements Elicitation. This method is used for the
stakeholders to identify their ideas that independently get
into their heads and consider these as needs (initial
goals). Each member thinks something related to the
selected goal and makes it concrete as an idea, and writes
down a generated idea on a paper card, so that all of the
members can read it. This method requires customer
expertise and may take a long time to determine what the
customer wants from the system.
Therefore, most of the generating requirements
techniques depend on the vision of the software’s
developer (requirement engineer) to the system. So,
there is a need for an approach that organizes and
manages user requirements in the form that simplifies
the customer requirements by narrowing and bridging
the gap which may result between the customer and the
developer, and lead to a well documented specification.

3. THE PROPOSED APPROACH
The proposed approach represents a structured process
consisting of some managed stages. Some documents are
generated throughout these. This approach starts with the
preparation stage and extends up to the final stage(
enhancement of extraction) that represents the
concluding stage of the approach. Figure 1 illustrates the
conceptual overview of the proposed approach and the
outcome documentations of its stages
The subsequent sections explain the stages of the
proposed approach in more details.

Figure 1: Conceptual overview of the proposed
approach

3.1 PREPARATION STAGE

The objective of this stage is to understand the
system to be developed and familiarizing the
developer to the problem domain, to elicit and
record the initial requirements from stakeholders
correctly. The subsections explain in more details
the activities to be done in this stage.

Stakeholders identification document
Work documents documentation
Work practice documentations
Candidate tasks table

stage 0: Preparation

• Stakeholders identification

• Work practice documents

• Policies

• Work practice identification (current user roles)

stage 1: Initial extraction

• Initial user role model

• Task definition using:

Stage2: Enhancement of extraction

• User role menu structure

• Functional class documentation

• Software Requirements specification

Initial user role model
Update request document
Activity diagram with swimlanes
Windows navigation model
Task documentation

Initial user role model
Update request document
Activity diagram with swimlanes
Windows navigation model
Task documentation
Functional class document
Requirements document

3.1.1 STAKEHOLDERS’
IDENTIFICATION
Stakeholder is "anyone who benefits in a direct or
indirect way from the system which is being developed"
[1]. The first step towards discovering all the
requirements is to understand who all the stakeholders
are, and what roles they are expected to play i.e. we
need to understand the project’s sociology. An
organization chart can be useful to identify the other
stakeholders that might know why the system is
requested.
Next, the developer should write the needed information
about the stakeholders of the system such as, their
names, positions, relation types (i.e. direct, indirect)
with the system (i.e. the stakeholder weight), and the
relation descriptions of the stakeholders with the system
(what the stakeholders roles can play in the system to be
developed).

3.1.2 INITIAL REQUIREMENTS
ELICITATION
In the beginning, the customer might not have enough
ability to determine their requirements(needs) precisely.
To simplify that, we take the user’s tasks that currently
perform according to the roles they play as a starting
point of the negotiation. This will simplify the
interaction between the customer and the developer.
Also, it may lead to capture some details that the
developer may need. Taking the customer's feedback
about the mentioned initial requirements is important to
clarify what the customer exactly needs. Figure 2
illustrates the proposed document for the user role
description. Furthermore, addressing the collected work
practice related documents may be useful to be
considered as one of the requirements resources. These
documents may consist of working documents and
report documents, etc.

Figure 2: work practice representation document

3.1.3 SETTING INITIAL
REQUIREMENTS
At the end of the current stage, based on the previous
document the developer identify (capture) list of the
candidate requirements. These will be considered as the
starting point of negotiation to identify the initial
requirements. The developer lists the proposed needs in
priority order (figure 3), where each need will consist of
one or more tasks (i.e. each need may consist of one or
more scenarios). So the advice is to consider each

scenario as a task. UML use case diagram can be
used to present customer’s needs, the relation among
them and the interactions among actors with these
needs. Use Cases represent needs in abstract level
without taking into considerations the tasks that each
Use case may contain. So, Figure 3 is proposed to
show the needs and the tasks that each need may
contain.

Need.# Task# Task name Related documents #

Figure 3 Candidate requirements document

3.2 INITIAL EXTRACTION STAGE
The stage starts with the tasks conducted by each
user role i.e. the tasks which can be implemented by
the computer, considering them as the initial
requirements. The idea focuses on preparing a fast
prototype for each task. Each prototype focuses on
the main states each task may contain. These states
are shown in the form of windows navigations. The
conceptual overview of this stage is shown in figure
4 which shows visually the sequence of the stage.
The subsequent sections of this section explain in
more details the activities to be followed in this
stage.

3.2.1 User role model

User role
Work description Related documents

inquires

Yes No
Comments

or

Task definition

End of stage

Start of stage

More tasks

No

Yes

User role model

Task

Documentation

Add/Modify
need request

Grouping of the related tasks

Prototype
inquiries

Inquires ?

Figure 4: Conceptual overview
of the initial extraction stage

After identifying the candidate list of tasks that can be
implemented by computer, these tasks will be conducted
to their relative user roles (to simplify what tasks the
computer can perform from each user role perspective).
These will be shown in the User role model which can
represent the initial menu structure (just in requirements
stage). The idea of the proposed model focuses on the
system's end-users point of view. It shows the
interactions between the system being developed and its
proposed end-users according to their proposed tasks
that they are responsible for (i.e. each role responsible
for one or more tasks). Figure 5 bellow illustrates such
model.

Figure 5: User role model

3.2.2 TASK DEFINITION
Each task needs to be expressed how it works. It will be
demonstrated in the activity diagram with swimlanes to
show the responsibilities of the system and the user to
execute the task(i.e. to show the interactions between
the user and the system). Figure 6 illustrates an example
of checking participant information in a simple library
system, and figure 7 shows its equivalent windows
navigations which will be prepared to show most of
states that the task will contain. Windows navigations
consist of one main interface (as starting window)
which is may be followed by one or more navigated
windows and the event that cause the followed
window(interface). The description under the line
indicates what the event has caused.

Figure 7: Windows navigation example

Customer's comments should be documented which
may require an update or change in tasks or even
adding new task. Documentation should contain the
following:

Document number
Document name
Requirement number
Task number
Task name
Request type (add/Modify)
Source of request
Related documents
Impact of request & comments

Each updated and new added tasks will be
demonstrated/re-demonstrated (when necessary) as
mentioned above. Then each evaluated task will be
documented.
On the other hand, the developer may face some
inquiries which need to be interpreted and answered
before or during demonstration of the prototypes to
the customers. The proposed document contains the
inquiries points and customer's feedback about the
required inquires by the developer.

For each evaluated task, the developer documents its
descriptions which contain the purpose of the task,
the assumptions, the constraints/security, the

User selects add

Adding new participant

Participant Id : 111

Participant Id : 111
Name: Mohamed

Dept. Computer Sc.

Status:

 BSc students

 Postgrad. Std.

 Staff member

Update Cancel

Participant found

Editing its information
Invalid Participant Id

Add Cancel

Participant not found

Asking for addition

Name:
Dept.:
Status:
 BSc students

 Post grad. Std.

 Staff member

 Add Cancel

User role

Need1 Need 2 Need n ...

Tasks Tasks Tasks

[found] [not found]

[check id]

Enter
participant Id

Ask for
adding new
participant

Browse the
participant

information

User System

Figure 6: Activity diagram with swinmlanes example

primary user, the secondary user, the related updated
documents, input, process and output of the steps that
the task contains.

3.2.3 GROUPING THE RELATED TASKS
If there are no more requests, the developer groups the
related tasks and considers the tasks that complement
the same group as one functional class taking into
consideration the users roles in the grouping operation.

Furthermore, by grouping the tasks, we can manage
various complexities and organize the number of tasks
in the system, best for the developer to prioritize the
functional classes. Figure 8 shows an example of two
functional classes with their relations (the arrow
direction shows the dependency or relation type). The
documentation of the grouping tasks may consist of the
functional class name, the indication or the description
of its belonging tasks as well as the other functional
classes which have relations with it.
Getting customer's final evaluation on the functional
classes to be performed is also important for good
specifications. The customer’s feedback may include
changes, updates or addition of new functional classes
or tasks.

Figure 8: Example of two functional classes dependencies

3.3 ENHANCEMENT OF EXTRACTION
STAGE
In this stage, the developer goes more in depth to orient
the customer more towards defining the functions to be
performed by the system. It may be that some more
requirements need to be expressed. Figure 9 illustrates
the conceptual overview of this stage which shows
visually the sequence of the stage and the subsequent
sections of this section will explain this stage in more
details.

3.3.1 REFINED USER ROLE MENU
STRUCTURE
Demonstrating the menu structure for each refined
user role may lead the customer to more update,
change or even addition of new requirements which
would increase the number of ideas and suggestions
for requirements specifications and improvements.
Furthermore, one of the useful reasons for
demonstrating the menu structure of each user role is
to check whether all functions required by the
customer are included.
The first window in the menu (i.e. the user's parent
window) contains one or more functional classes.
Each Functional class contains one or more main
tasks. Each task will be represented as a choice in
the function's class parent window. Each choice will
be represented as a scenario. "A scenario is a story
which tells us how a specific task instance is
executed" [9]. Figure 10 shows the proposed user
role menu structure.
Getting customer's final evaluation on the functional
classes to be performed is also important for writing
good specifications. Each functional class should be
checked with customer to get the feedback. The
feedback may contain modification or addition of
more tasks or functional classes.

Figure 9: Conceptual overview of the Enhancement

extraction stage

 Start of stage

User role menu

Functional class acceptance document

Comments Yes

Add/Modify
requirement

No

End of

Prototype
inquiries

Inquires

Writing
requirements
document

end

Task Task

Task

Task

Task

Functional class Functional class

 Figure 10: User role menu structure

3.3.2 FUNCTIONAL CLASS
DOCUMENTATION
For each finally evaluated Functional class, the
developer has to record its description which contains
the last versions of the tasks. Each task will be
considered as a scenario in the functional class. The task
descriptions are illustrated in more detail in the task
document. The document for documenting the
functional class contains the following:
• Functional Class Number
• Functional Class Name
• Purpose of the Functional Class
• Related Functional Class(es)
• Constraints or Security required
• Task(scenario) Number, Task Name and Data Items

in the task (i.e. the data items including the ones
appearing in the interface prototype and those not
appearing in it (i.e. the internal data items))

Finally, this stage ends with the combining of all the
documentations obtained during the various stages of
the proposed approach into a single document, which is
focused in only functional requirements parts of the
systems with its resources documents, while other parts
of the IEEE standard 830, 1993(software requirements
specification) is out of the scope of this work. The
template of this standard is illustrated in [9].

4. CONCLOSION
We have proposed an approach which aims to extract
requirements specification in a systematic way. In this
approach, we have attempted to define a way to get
customers needs in the form that could meet their
satisfaction. We trace, control, validate and manage the
customers’ requirements by documenting them in the
form that makes the developers and customers
understand each other.
In this approach the work practice document has been
used as a basis for identifying the candidate needs

which can be used as a starting point of negotiations
between the developers and customers by using the
work breakdown structure for these needs to get the
tasks that each need contains. These tasks are
demonstrated using the prototyping approach in the
form of Windows Navigation Model. Then
structured guide lines are provided to document the
requirements. Finally, we conclude that generating
requirements based on tasks technique may help to
find the estimation of the project size and its
complexity.

5. REFERENCES
[1] Pressman S. Roger, Software Engineering: A
practitioner's Approach, 6th edition, 2005.
[2] Daivy b. and Cope c., Requirements Elicitation-
what’s missing? Journal of Issues in Informing
Science and Information Technology (IISIT), 5,
543-551 2008.
[3] Rajagopal P. and et.al, A new approach for
requirements elicitation, proceeding of 6th
conference on software engineering, IEEE, 2005.
[4] Nafo A., Master thesis: Applying validation and
verification in local software systems, Higher studies
academy, Benghazi, 2007.
[5] MARCOS A., Carlos H and Edger T.,
Identifying dependability requirements for space
software systems, J. Aerosp.Technol. Manag., São
José dos Campos, Vol.2, No.3, pp. 287-300, Sep-
Dec., 2010.
[6] Snyder C., Using Paper Prototypes to Manage
Risk, http://www.snyderconsulting.net/us-paper.pdf,
retrieved date: 22.8.2007.
[7] Metzger Andress, Stefan Queins, A Reuse- and
Prototyping-based Approach for the Specification
of Building Automation Systems, University of
Kaiserslautern, Germany, 2006.
[8] Oshiro K., Kenji W., Motoshi S., Goal-Oriented
Idea Generation Method for Requirements
Elicitation, 11th IEEE International, requirements
Engineering Conference, 2003.
[9] Vliet Van, Software Engineering: Principles and
practice, Biddles ltd, King's lynn, Norfolk, 2004.

User role
Functional class

Functional class

Functional class

Task

Task

Task

Task Task Task

