
Bridging the Gap: Empowering Use Cases with Task
Models

Daniel Sinnig
Computer Science Institute

University of Rostock, Germany
dasin@informatik.uni-rostock.de

Rabeb Mizouni
Information Technology College
UAE University, Al-Ain, UAE.

mizouni@uaeu.ac.ae

Ferhat Khendek
ENCS Faculty

Concordia University, Canada.
khendek@encs.concordia.ca

ABSTRACT
Use cases have become the standard for modeling
functional requirements, whereas task models are used to
capture UI requirements. Despite recent advances, software
engineering (SE) and user interface (UI) design methods
are poorly integrated making it difficult for SE and UI
teams to collaborate, synchronize their efforts and avoid
inconsistencies. To address these issues, we propose an
integrated development methodology for use cases and task
models. Both artifacts are used to specify software
requirements, but emphasize two different aspects in a
complementary manner. The integration consists of using
CTT task models to iteratively enrich UI related steps in
the use case model. We demonstrate that such an approach
allows for a clear separation of concerns and therefore
avoids potential inconsistencies between the two artifacts.

Author Keywords
User interface development, use cases, task models,
development methodology

ACM Classification Keywords
D.2.1 Requirements/Specifications, D.2.9 Management

General Terms
Design, Human Factors, Management

INTRODUCTION
The development of interactive systems is a
multidisciplinary process requiring collaboration between
several teams with different backgrounds; each bringing in
its own experience and view of the system under
development. Efficient communication and collaboration
between software engineers and UI designers is required to
develop a software product that satisfies its functional
requirements and that is highly usable [11].
In current practice UI design methods are poorly integrated
with standard software development processes [1]. Instead
of having an integrated process, where UI design follows

as a logical progression from a functional requirements
specification, these activities are either (1) handled
independently and therefore potentially lead to
inconsistencies and redundancies or (2) UI and SE
artifacts are intermingled into one specification violating
the principle of separation of concerns [23].
The scientific literature [2] distinguishes two main
strategies to close this conceptual gap: (i) achieving
integration at the artifact level and (ii) achieving integration
at the methodological level. The former approach is
concerned with proposing unified SE artifacts and UI
artifacts. The latter acknowledges the utility of
heterogeneous specifications and instead, suggests
integration at the process level. An effective integration,
however, is not a matter of re-representing SE or UI
artifacts. As Paternò points out, specialized notations
should be used in a complementary manner and integrated
by a common process which effectively supports software
engineers and UI designers in their work rather than
complicate it [17].
For example, a common mistake is to intermingle
functional requirements with UI details [5]. As a result, the
functional requirements specification not only becomes
unnecessary long and hard to maintain, but also decisions
about UI details are made too early in the process,
potentially excluding more favorable alternatives. Instead,
functional and UI requirements should be captured in
specialized artifacts interrelated through well-defined
traceability links.
This paper introduces an integrated development

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
EICS’10, June 19–23, 2010, Berlin, Germany.
Copyright 2010 ACM 978-1-4503-0083-4/10/06...$10.00.

Figure 1: Empowering Use Cases with Task Models

291

methodology for use case models and task models. The
former is the predominant SE artifact for specifying
functional requirements and the latter is commonly used to
capture UI requirements and design information. We
propose to use both artifacts in a complementary manner.
The core functional requirements are captured in the use
case model, which is enriched by a set of task models
capturing UI specific interactions where it is necessary. As
depicted in Figure 1, traceability between the various
models is established through ‘anchors’ in the use case
model pointing to the respective task model counterpart.
The remainder of this paper is structured as follows: in the
next section we provide the necessary background
information by reiterating key characteristics of use case
and task models. Next we define our proposed
development methodology, followed by a review of
existing integration attempts for use cases and task models.
Finally, we conclude.
USE CASES AND TASK MODELING: BACKGROUND

Use Case Models
Use cases were introduced in the early 90s by Jacobson [8].
He defines a use case as a “specific way of using the
system by using some part of its functionality.” Use case
modeling has become mainstream SE practice as a key
activity in the software development process (e.g., Rational
Unified Process (RUP)). There is accumulating evidence of
significant benefits to customers and developers [12].
A use case describes the way a system is used by its actors
to achieve their goals. Actors represent users or entities
(e.g., secondary systems) that interact with the system. The
primary actor, typically a user, initiates the use case in
order to accomplish a pre-set goal. Secondary actors play
the role of supporting the execution of the use case and
may participate in the interaction later.
An example of a (user-goal level) use case in “fully-
dressed” format [5] is shown in Figure 2. The use case

depicts the interactions involved in processing a contact
request, as is typical in social networks such as LinkedIn
and Facebook. The main success scenario describes the
situation in which the primary actor directly accomplishes
his goal of confirming the contact request. The two
extensions specify alternative scenarios, which occur when
the primary actor fails to authenticate himself or refuses the
contact request.
In use-case driven software development processes,
including RUP, ICONIX [20] and URDAD [24], the use
case model drives the development starting from the initial
gathering of requirements to design, implementation,
deployment and testing. The use case model is developed
in an incremental manner, where an initial coarse grained
model is successively revised and refined throughout the
software development life cycle.

Task Models
Task modeling is a well understood technique supporting
user-centered UI design [16]. It has become a central
concept of many model-based UI development approaches,
such as MOBI-D [19] and TERESA [18].
Task models are used at different stages of development
(analysis, requirements and design). The analysis level task
model captures the current work situation and highlights
elementary domain processes as well as exposes
bottlenecks and weaknesses of the problem domain. When
used at the requirements level, task models specify the
envisaged way tasks are performed using the UI under
development. These tasks are further refined by design
level task models, which for example tailor the task set to a
particular target device by taking into account its
interaction capabilities. Their primary purpose is to
systematically capture the way users achieve a goal when
interacting with the system [25]. Note that this paper
focuses on requirements- and design level task models and
their relationship to use cases. Analysis-level task models
are out of the scope.
Several task model notations exist in the literature.
ConcurTaskTrees (CTT) [16], GOMS [4], TaO Spec [7],
WebTaskModel (WTM) [3], and HTA [1] are among the
most popular ones. In this paper, we consider CTT. In this
notation, tasks are organized hierarchically, where more
complex tasks are successively decomposed into simpler
sub-tasks. CTT includes a set of binary and unary temporal
operators. The former are used to temporally link sibling
tasks, at the same level of decomposition, whereas the latter
are used to identify optional and iterative tasks. An
example of CTT task specification is depicted in Figure 3.
It shows the break down of a root task “Authenticate” into
the sub-tasks “Provide Login Data” and “Submit”.

Use Cases vs. Task Models
Use case and task models are both scenario-based and as
such capture sets of usage scenarios of the system under
consideration. On the one hand, a use case describes

Use Case: Process Contact Request
Goal: Primary actor successfully processes a contact request
Level: User-goal
Primary Actor: Customer
Main scenario

1. Customer authenticates herself/himself.
2. System ensures the validity of the information.
3. System informs customer that login was successful.
4. Customer identifies and confirms the contact request.
5. System processes the user request.
6. System informs user that a new contact was added to contact list.

Extensions
3a. The provided information cannot be validated:

3a1. The system informs the customer that the provided information
could not be validated.

3a2. Use case resumes at step 1.
4a. Customer rejects contact request:

4a1. Customer rejects the contact request.
4a2. System informs user that the contact was not added to contact

list.

Figure 2. “Process Contact Request” Use Case

292

system functionality by means of a main success scenario
and extensions. On the other hand, a task model captures
user-system interactions within a hierarchical task tree. We
identify the following main differences that are important
for understanding their intended applications and guide any
integration attempt:
• In use case models, requirements are captured at a

higher level of abstraction whereas task models are
more detailed. The atomic actions of a task model are
often lower-level UI details that are irrelevant (actually
contraindicated [5]) in a use case.

• Task models focus on aspects that are relevant for UI
design and as such, usage scenarios are strictly depicted
as input-output relations between the user and the
system. System interactions that are hidden from the
end user, e.g., the involvement of secondary actors or
internal computations as specified in use case models,
are not captured.

EMPOWERING USE CASES WITH TASK MODELS
An integration of use cases and task models is not a simple
matter of improving expressiveness or of the ability to
convert or embed a model into another one. Instead, use
case and task models should be used according to their
intended purposes and integrated at the process level. This
enables software engineers and UI experts to use familiar
notations that support them to effectively carry out their
work.

Assumptions
Before introducing our methodology we start by outlining a
few necessary assumptions:
1) The functional requirements captured in the use case

model are independent of a particular user interface.
The “fully dressed” use case format [5] as portrayed in
Figure 2 is used for describing use cases.

2) The requirements and design information captured in
task models extend the functional requirements by
taking into account the specifics of a particular type of
user interface. For our approach we recommend using
CTT task models as these provide the richest operator
set and are supported by the CTTE tool [13].

3) We assume that the development work of specifying
functional and UI requirements is accomplished by two

distinct teams: SE team and HCI team. The efforts of
both teams need to be synchronized. Unlike the
approach by Lu [10] where task modeling precedes the
development of use cases, we assume that task models
are used at the requirements / design stage and as such
are developed based on a given use case model.

Development Methodology
As shown in Figure 4 our methodology consists of three
phases. (1) The SE team prepares a coarse-grained use case
model, rich enough to distinguish between UI-related steps
and system-related steps. UI-related steps are identified
with so-called anchors points. (2) Once, the anchors have
been identified, the UI team is responsible for defining the
corresponding CTT task models, while the SE team further
refines the use case model. This phase may require several
iterations between the two teams. (3) Finally, the efforts of
both teams are merged into a consolidated specification
consisting of functional and UI requirements.
The three phases are described in detail hereafter. As a
running example we use the “Process Contact Request” use
case given in Figure 2.

Specification of a Coarse Grained Use Case Model
The goal of this phase is to obtain a conceptual
understanding of the system. Key behaviors of the system
are defined by a set of coarse grained use cases, the
primary actors are identified, and an initial mapping to
high-level business goals is performed. For each use case,
the SE team provides an initial behavioral description and
identifies its scope and priority. Without delving into
details, the initial behavioral description documents the
primary interactions that actors will perform with the
system. Error cases and exceptions are only marginally
captured and will be detailed further in the second phase.
For each use case, the SE team identifies a set of use case
steps that require further elaboration with UI details. For
this purpose, so called “anchor points” are used, whose aim
is twofold: (1) To unambiguously identify UI-related use
case steps and (2) to cross-reference associated CTT task
models, which will be developed by the UI team in the next
phase. For example, in the “Process Contact Request” use
case, step 1 (“Authentication”) and step 4 (“Identification
of Contact Request”) are marked with anchor points as
shown in Figure 5. Both steps do not detail how the step-
goals are achieved. These are UI-specific details and will
be captured in the corresponding CTTs.

Use Case Refinement and CTT Task Modeling
For each specified anchor, the UI team defines a set of UI-
related interactions in the form of CTT task models. This
phase requires knowledge about the associated use case
and its goal as well as a deep understanding of the nature of
the application and its intended usage. The former can be
obtained by tracing back to the corresponding anchor point
whereas the latter requires consultation of stakeholders and
related requirements artifacts. Only when both factors are

Figure 3: “Authentication” Task Model

293

well understood, the UI team will be able to properly
evaluate the feasibility of a certain set of interactions and
its usability in the context of the application. Let us recall
step 1 (“Authentication”) of our example use case.
Depending on the UI type, the UI team may recommend
any of the following interaction scenarios:

• “The user enters the user name and password in any
order” (Desktop UI)

• “The user enters the user name and then the
password, in this specific order.” (Mobile UI)

• “The user provides her/his fingerprint.” (Kiosk UI)
• “The user dictates the login information.” (Text-

Free Voice UI)
Once the interaction scenario is selected, the HCI team
proceeds and develops a corresponding CTT task model.
The various task models are then associated with the
anchors in the use case, building a link between the use
case steps and their UI-specific realization, as shown in
Figure 5. In our example, we develop CTT task models for
two anchors: use case step 1 and step 4. We assume that
both Desktop UI and Text-Free Voice UI interactions are
possible scenarios for the authentication step. The CTTs of
these two alternatives are composed using the CTT choice
operator ([]), as illustrated by “CuAu-CTT” in Figure 5.
Additionally, we associate step 4 with a refining CTT
labeled “ConfReq-CTT”, specifying the appropriate
interaction for confirming a contact request.

Concurrently to the work of the HCI team, the SE team
proceeds with the elaboration of the coarse-grained use
cases defined in the first phase. Thus far alternative and
failure cases have been considered only marginally.
However, in order to obtain a complete behavioral
description, exhaustive modeling of alternative scenarios is
necessary. Therefore, in this phase, the use cases are
further completed by specifying the various use case
extensions. Furthermore, non-UI related steps may be
refined by interactions with secondary actors and/or
internal system steps. Notice that both step types are
irrelevant for UI design and as such should never be
attributed an anchor point.
The refinement phase is iterative and requires
synchronization among the involved SE and HCI teams.
For example, a newly discovered use case extension
(alternative scenario) may include use case steps which are
UI-related and as such require enrichment with CTT task
models. Similarly, certain UI-related interactions may
require the availability of a system functionality, which has
not yet been captured in the use case model.

Merging Specifications
In order to obtain a composite model the interactions
entailed in the use cases and CTTs are merged. Intuitively,
the behavior of the composite model can be summarized as
follows: At first, the composite model adopts the behavior
of the use case model up until a point where a step with an
anchor point is encountered (e.g., step 1 in the example).
At this point, the composite model adopts the behavior of
the associated CTT model depicting how the primary actor
may accomplish the step-goal using a particular UI.
Thereafter, the composite model again, continues with the
behavior of the use case model. This alternating continues
until the usage scenario comes to an end.

Discussion
Our development methodology enforces clear separation of
concerns and thus minimizes inconsistencies and overlaps,
and strengthens the synergy between the two artifacts. At
the same time (and as convenient side-effects) our
methodology addresses current problems with task models
and use cases, as briefly discussed next.
Task model scalability: In current practice, task models
capture the behavioral aspects of the UI within a single
monolithic task tree [22]. A monolithic task tree is suitable
for small applications but becomes unmanageable (in terms
of visualization, comprehension and modification) for
applications of even moderate size. In order to reduce the
complexity of task models, a modular approach is needed
where instead of a single task tree a set of task trees is
defined. As it turns out, our methodology promotes
precisely such a modular setup. Instead of a single task
model, a set of task models is defined and related to the
various UI-specific use case steps that represent their
context.

Figure 4. Collaborative Development of Use Cases and Task

Models

294

Use Case Misuse: As stated previously, use cases are
frequently misemployed by intermingling the functional
requirements with UI details. Our methodology
acknowledges this close relationship between system
functionality and the UI, but promotes capturing both
aspects in separate artifacts interrelated through well-
defined traceability links.
RELATED WORK
The relationship between use cases and task models has
been investigated by several research groups. The
integration of both artifacts is seen as a promising solution
to close the gap between SE and HCI. According to Artim
[2], the majority of integration attempts falls into one of the
following three categories: (1) Conversions from task
models to use case models and vice versa, (2) Extensions of
existing SE/HCI models to capture task model and use case
information respectively, and (3) Methodological
approaches which attempt the integration at the process
level. In what follows we review for each category the
most significant attempts:
Paternò [17] proposes a method for integrating use case
diagrams and task models. Use cases denote core
functionalities offered by the system which are refined by a
set of task models. However, the scenario descriptions
entailed in each use case are not taken into account.
Another approach that falls under the first category is
presented by Noberga et al. [14]. Motivated by the fact that
the current UML standard provides insufficient support for
modeling interactive systems, a mapping from CTT task
models to UML activity diagrams is proposed. The
mapping is complemented by an extension of UML with
high-level syntactic constructs related to task modeling.
Da Silva and Paton [6] propose UMLi as a modeling
language for interactive systems. UMLi extends UML with
UI diagrams for describing abstract interaction objects.
According to their eight-step methodology, use cases are
employed to define high-level functionalities which are

further refined by a set of user tasks captured in extended
UML activity diagrams. A set of logical links placed
between the various use cases and the activity diagrams
establish traceability between UI details and the
corresponding functional requirements.
Rosson and Carroll [21] propose a scenario-based approach
to object-oriented analysis and design. In order to integrate
usability concerns with functional modeling, the existing or
envisioned system is modeled by a set of instance
scenarios. In a bottom-up approach the various scenarios
are processed and serve as a basis for the creation of the
object model. Nunes and Conha [15] point out that UML
provides inadequate support for modeling architectural
concerns of interactive systems and propose their Wisdom
framework to fill this gap. While mainly based on existing
UML models, Wisdom introduces a CTT-like notation to
capture the envisioned dialogue between users and the
application.
The RESCUE requirements management process [9] is an
integration attempt that falls under the third category. The
process consists of a number of sub-processes. At the
analysis stage, human activity modeling (a form of task
modeling) is carried out to form an understanding of the
current socio-technical system in terms of users’ tasks,
goals and domain concepts. Based on the information
gained, a system-goal model using the i* approach [26] and
a set of use cases of the envisioned system are derived.
Subsequent phases comprise the development of system
architectural models and the specification of detailed
interactions between users and the UI. Consistency across
artifacts is ensured through a number of checks that are
(manually) conducted at the end of each phase.
The work reported in this paper was conducted in the
context of a larger project involving the formalization of
use case models and task models [22] based on a common
semantic foundation. In our original work, we proposed
employing use case and task models asynchronously

Figure 5: “Process Contact Request” Use Case Empowered with CTT Task Models

295

specifying two independent, yet overlapping views of the
system. In order to ensure that both views were consistent,
a set of equivalence and refinement relations are proposed.
In this work we are using both artifacts in a complementary
manner enforcing strict separation of concerns, which has
the advantage that consistency is an intrinsic property of
the development process.

CONCLUSION
In this paper, we proposed a development methodology for
combining use case and task models in a complementary
fashion. Following a three-phase process, a set of coarse
grained use cases, expressing the raw functional
requirements, are successively enriched with modular CTT
specifications resulting in a composite system model. The
composite system model represents both functional and UI-
specific requirements with a concise relationship.
We believe that the proposed methodology will help in
narrowing the gap between SE and HCI. Synchronization of
the efforts of SE and HCI teams in a complementary fashion
is likely to have a positive impact on software quality and
usability. Use cases and task models are strictly employed
according to their intended purposes. We enforce a clear
separation of concerns resulting in a requirements
specification that is easier to maintain and manage. Through
such integration, we also conveniently circumvent the
problem of task-model scalability. Moreover, the composite
system model can be used as a reference specification for
integrated testing, verification and validation purposes.
The formal semantics of the composite model is being
defined and is based on our previous work on common
semantics for use case models and task models [22].
Furthermore, we plan to carry out comprehensive case
studies and apply our approach to industrial-size projects.

REFERENCES
1. Annett, J. and Duncan, K. D., Task Analysis and Training

Design, in Occupational Psychology, 41, pp. 211-221, 1967.
2. Artim, J. M. (1997). Integrating User Interface design and

Object-Oriented Development through Task Analysis and
Use Cases. CHI97 - Object Models in User Interface Design
Workshop. Atlanta, GA.

3. Bomsdorf, B., The WebTaskModel Approach to Web
Process Modelling, in Proc. of TaMoDia'07, Toulouse,
France, pp. 240-253, 2007.

4. Card, S., Moran, T. P. and Newell, A., The Psychology of
Human Computer Interaction, 1983.

5. Cockburn, A., Writing Effective Use Cases, Addison-
Wesley, Boston, 2001.

6. de Paula, M. i. G., da Silva, B. S. and Barbosa, S. D. J.,
Using an interaction model as a resource for communication
in design, in Proc. of CHI '05, pp. 1713-1716, Portland, OR,
2005.

7. Dittmar, A., Forbrig, F., Stoiber, S. and Stary, C., Tool
Support for Task Modelling - A Constructive Exploration, in
Proc. of DSV-IS, Hamburg, Germany, pp. 59-76, 2004.

8. Jacobson, I., Object-Oriented Software Engineering: A Use
Case Driven Approach, ACM Press, NY, 1992.

9. Jones, S. and Maiden, N., RESCUE: An Integrated Method
for Specifying Requirements for Complex Socio-Technical
Systems, chapter in Requirements Engineering for
Sociotechnical Systems, Information Science Publishing, pp.
245-265, 2004.

10. Lu, S., Paris, C., Linden, K. V. and Colineau, N., Generating
UML Diagrams from Task Models, in Proc. of CHINZ'03,
Dunedin, New Zealand, pp. 9-14, 2003.

11. Memmel, T. and Reiterer, H., Model-Based and
Prototyping-Driven User Interface Specification to Support
Collaboration and Creativity, in Journal of Universal
Computer Science, 14 (19), 2008.

12. Merrick, P. and Barrow, P., The Rationale for OO
Associations in Use Case Modelling, in Journal of Object
Technology, 4 (9), pp. 123-142, 2005.

13. Mori, G., Patern, F. and Santoro, C., CTTE: Support for
Developing and Analyzing Task Models for Interactive
System Design, in IEEE Transactions on Software
Engineering, 28 (8), pp. 797-813, 2002.

14. Nobrega, L., Nunes, N. J. and Coelho, H., Mapping
ConcurTaskTrees into UML 2.0, in Gilroy, S.W., Harrison,
M.D. (eds) Interactive System, 3941, 2006.

15. Nunes, N. J. and Cunha, J. F., Wisdom ? A UML Based
Architecture for Interactive Systems, in Proc. of DSV-IS'01,
Glasgow, Scotland, UK, pp. 191-205, 2001.

16. Paternò, F., Model-Based Design and Evaluation of
Interactive Applications, Springer, 2000.

17. Paternò, F., Towards a UML for Interactive Systems, in
Proc. of Engineering HCI '01, Toronto, Canada, Springer
Verlag, pp. 7-18, 2001.

18. Paternò, F., Santoro, C., Mäntyjärvi, J., Mori, G. and
Sansone, S., Authoring Pervasive MultiModal User
Interfaces, in International Journal of Web Engineering and
Technology, pp. 235-261, 2008.

19. Puerta, A., A Model-Based Interface Development
Environment in IEEE Software, 14(4), pp. 40-47, 1997.

20. Rosenberg, D. and Stephens, M., Use Case Driven Object
Modeling with UML: ICONIX Process in Theory and
Practice, Addison-Wesley, 2006.

21. Rosson, M., Integrating development of task and object
models, in Communications of the ACM, 42 (1), 1999.

22. Sinnig, D., Chalin, P. and Khendek, F., Common Semantics
for Use Cases and Task Models, in Proc. of IFM'07, Oxford,
England, pp. 579-598, 2007.

23. Sinnig, D., Chalin, P. and Khendek, F., Consistency between
Task Models and Use Cases, in Proc. of DSV-IS'07, Spain,
pp. 71-88, 2008.

24. Solms, F., Business Process Modeling using URDAD,
Technical Report in Solms Consulting, 2005.

25. Souchon, N., Limbourg, Q., Vanderdonckt, J. and V, J.,
Task Modelling in Multiple Contexts of Use, in Proc. of
DSV-IS'02, pp. 59-73, Rostock, Germany, 2002.

26. Yu, E., Towards Modelling and Reasoning Support for
Early-Phase Requirements Engineering, in Proc. of Int.
Symp. on Requirements Engineering, pp. 226-235, 1997.

296

