
Improving Software Quality from the Requirements
Specification

Joshua Eckroth
The Ohio State University

eckroth@cse.ohio-state.edu

Guy-Alain Amoussou
Humboldt State University

amoussou@humboldt.edu

ABSTRACT
The first stage of software development, functional require-
ments specification, is considered the most important stage
in the software lifecycle. Requirements constructed in this
stage affect all other stages of the lifecycle, and thus affect
software quality. We provide a method for determining how
functional requirements affect software quality. To do so,
we utilize a functional modeling framework that includes a
controlled language for requirements specification and assess
software qualities. Then we apply an information entropy
metric to measure the significance of each software require-
ment. Using this method the designer can identify which
requirements, when implemented, will most affect software
quality.

Categories and Subject Descriptors
D.2.1 [Software engineering]: Requirements; D.2.8 [Soft-

ware engineering]: Metrics; D.2.9 [Software engineer-

ing]: Management—Software quality assurance

General Terms
Design, Measurement

Keywords
Requirements engineering, functional requirements, hyper-
nyms, requirements metrics, software quality, information
theory, information entropy

1. REQUIREMENTS FRAMEWORK
Requirements are typically expressed in natural language

[8, 9] and often divided into two categories: functional and
non-functional. Non-functional requirements are “cognitive
requirements”, or statements of human desires, such as “user
login must be efficient and simple,” while functional require-
ments only state the required functionality: “the system

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOD’07 Science of Design Symposium 2007, Humboldt State University,
Arcata, California, USA
Copyright 2008 ACM 978-1-60558-436-2/07/03 ...$5.00.

must allow users to log in” [6]. The manner in which func-
tional requirements are specified, however, may possess am-
biguities [5] and misrepresentations [7].

Instead of natural language, we employ a framework which
dictates a simple format, “actions over objects,” for spec-
ifying functional requirements. In particular, we focus on
phrases with the syntax“[verb] [object],”with an active voice
and transitive verbs, such as “request user credentials.”

The Common Functional Modeling Framework (CFMF)
[4, 3] defines functional requirements in the syntax described
above, as actions over objects. The semantics of the CFMF
involve the action and object choice. The objects will be
project-specific, and as general as possible while still being
distinct. The actions are chosen from a dictionary of “func-
tional primitives,” which are transitive verbs that are more
general than other verbs which a requirements engineer may
use. The functional primitive is a hypernym for other, more
specific verbs.

2. REQUIREMENTS METRIC
A benefit for writing functional requirements in the Com-

mon Functional Modeling Framework is the relative ease of
developing requirements metrics which further inform de-
signers.

We utilize information entropy to determine the signif-
icance, in terms of information content, of specific func-
tional requirements in a requirements document written us-
ing the Common Functional Modeling Framework. Previous
work [1] has shown Shannon’s formulation of information en-
tropy [10], rather than other, more generalized forms [2], is
most meaningful when measuring software systems. Since
we position our information entropy metric as a require-
ments metric, the entities we are measuring are functional
requirements. Each functional requirement has a measur-
able amount of information content, as do the modules com-
posed of these functional requirements.

This metric helps designers quantitatively determine the
impact functional requirements have on the functionality of
the product, or meeting the stakeholders’ needs. However,
our goal is to improve software quality. To do so, we estab-
lish relationships between functional primitives and specific
software qualities, such as Secure, Maintainable, Portable,
and so on. These relationships help identify how software
requirements impact software quality.

3. SOFTWARE QUALITY
When developing software, software quality should be ad-

dressed as early as possible. We empirically develop rela-

38

tionships between functional primitives and software quality
that provide knowledge about which functional primitives,
and hence functional requirements, are and will be impor-
tant to quality. The information entropy metric provides an
additional aid by quantifying which functional requirements
most impact software quality.

Before and during development, the functional require-
ments document should continually be checked against the
functional primitive–software quality relationships so that,
when designing, implementing, and testing functional re-
quirements, the related software qualities are considered.
Functional requirements with high information content should
also be paid particularly close attention, as the qualities that
their functional primitives impact will be correspondingly
highly impacted.

4. CONCLUSION
Our goal is to enable a designer to improve the final prod-

uct by addressing quality issues in the functional specifica-
tion of the system, since this first set of requirements sig-
nificantly affects the entire system engineering cycle. The
process we outline in our research integrates quality con-
cerns into the establishment of functional requirements.

5. ACKNOWLEDGMENTS
This research was funded by the National Science Founda-

tion, Grant CCF-0453491, in the context of Research Expe-
rience for Undergraduates–Role Models in Science at Hum-
boldt State University, Arcata, California, USA.

6. REFERENCES
[1] S. Abd-El-Hafiz. Entropies as measures of software

information. In 17th IEEE International Conference
on Software Maintenance (ICSM’01), 2001.

[2] J. Aczél and Z. Daróczy. On Measures of Information
and their Characterization. Academic Press, 1975.

[3] G.-A. Amoussou. Thèse présentée pour l’obtention du
grade de Docteur de l’UTC. PhD thesis, Universitè de
Technologie, Compiègne, 1999.

[4] G.-A. Amoussou and S. Rohmer. Functional modeling:
A survey for common framework design. In Modeling
and Simulation (ESM’2002), 2002.

[5] D. Berry, E. Kamsties, and M. Krieger. From contract
drafting to software specification: Linguistic sources of
ambiguity–a handbook. Online:
http://se.uwaterloo.ca/˜dberry/handbook/
ambiguityHandbook.pdf, 2003.

[6] M. Felici, M.-A. Sujan, and M. Wimmer. Integration
of functional, cognitive and quality requirements: A
railways case study. Information and Software
Technology, 42:993–1000, 2000.

[7] V. Gervasi and D. Zowghi. Reasoning about
inconsistencies in natural language requirements.
ACM Transactions on Software Engineering and
Methodology (TOSEM), 14(3):277–330, 2005.

[8] L. Mich, M. Franch, and P. N. Inverardi. Market
research for requirements analysis using linguistic
tools. Requirements Engineering, 9(1):40–56, 2004.

[9] C. Neill and P. Laplante. Requirements engineering:
The state of the practice. IEEE Software, 20(6):40–45,
2003.

[10] C. Shannon. A mathematical theory of
communication. SIGMOBILE Mobile Computing and
Communications Review, 5(1):3–55, 2001.

39

