Requirements Eng (2004) 9: 229-237
DOI 10.1007/s00766-004-0203-7

ORIGINAL ARTICLE

Keng Siau - Lihyunn Lee

Are use case and class diagrams complementary
in requirements analysis? An experimental study
on use case and class diagrams in UML

Received: 15 July 2003/ Accepted: 25 May 2004 / Published online: 7 October 2004

© Springer-Verlag London Limited 2004

Abstract Despite the status of united modeling language
(UML) as the de facto standard for object oriented
modeling, it has received controversial reviews. The
most controversial diagram in UML is the use case
diagram. Some practitioners claim that use case dia-
grams are not valuable in requirements analysis and
some have even argued that use case diagrams should
not be part of UML. This research examined the values
of use case diagram in interpreting requirements when
use case diagrams are used in conjunction with class
diagrams. In other words, the study investigated the
possible synergetic values and relationships between the
use case and class diagrams in the context of require-
ments analysis. This study used theories from cognitive
psychology as its theoretical and conceptual foundation.
The data collection utilized the verbal protocol tech-
nique in which subjects were asked to think aloud as
they interpreted the use case and class diagrams. The
results show that the use case diagrams were more
completely interpreted than the class diagrams. The
presence or absence of one diagram when interpreting
another diagram had no effect on the outcome of the
interpretation. From the results, we argue that the use
case diagrams and class diagrams depict different aspects
of the problem domain, they have very little overlap in
the information captured, and both are necessary in
requirements analysis.

Keywords Requirements analysis - Requirements
engineering - Conceptual modeling - Unified modeling
language - Use case diagram - Class diagram -
Experimental study

K. Siau (X)) - L. Lee

Department of Management, University of Nebraska-Lincoln,
209 College of Business Administration,

Lincoln, NE, 68588-0491, USA

E-mail: ksiau@unl.edu

1 Introduction

Since the late 1990s, unified modeling language (UML)
has emerged as the software industry’s dominant mod-
eling language. However, the use case centric approach
of the UML modeling language has been controversial.
The rational unified process (RUP) for UML has three
defining features: use case driven, architecture-centric, as
well as iterative and incremental processes. The use case
driven feature is the core of the RUP. Use cases surfaced
as an excellent way to drive requirements capture,
analysis, and high-level design [5]. The use case centric
approach is, however, often challenged.

The literature reveals that there are critical opinions
and disapproving views besetting the role of use cases.
For instance, Krogstie [14] questioned the domain
appropriateness of use cases. Dobing and Parsons [9]
highlighted the controversy between the ‘‘naturalness”
of the object models involved and the idea of use cases
facilitating communication and requirement verification.
They also pointed out that advocates of use cases do not
offer empirical evidence of use cases being “good”
mechanisms for communicating with users. “Goodness
of use cases could be established in relative sense by
comparing them to other mechanisms for communicat-
ing the same information with users™ [9].

This research investigated the roles and values of the
use case diagram in understanding requirements de-
picted by the use case and class diagrams. It should be
noted that the goal of the research is not to compare use
case and class diagrams. They have different information
content and they cannot be made informationally
equivalent for comparison purposes [23]. Rather, the
objective of this research is to investigate whether these
two diagrams are able to complement each other in the
context of understanding system requirements.

The rest of the paper is organized as follows: Sect. 2
provides a literature review on the use case and class
diagrams. Section 3 motivates the research and lists the
research questions. Section 4 discusses the theoretical
foundation for this research and proposes the research

230

hypotheses. Section 5 describes the research design and
the research procedure. Section 6 presents the results
and discusses the findings. The last section, Section 7,
discusses the implications of the findings and concludes
the paper.

2 Literature review
2.1 Use case diagram

The main purpose of use case diagrams is to visualize
use cases in the system. Elements of the use case diagram
include actors, use cases, and relationships. The use case
diagram shows not a single use case, but a series of use
cases for a given system, and each use case can be further
annotated with textual description. The use case dia-
grams combine both UML notations and narrative text.
In general, use case diagrams distinguish themselves as a
highly text-based communication tool, which focuses on
transactions from the user’s perspective [9]. Use cases,
nevertheless, are requirements analysis and modeling
tools that should describe ““what”, not “how” [9].

In RUP, use cases serve as a guiding technique to deal
with all types of user aspects [12]. Use cases provide an
inventory of the kinds of interactions that could occur
between users and a system, thus providing a forum for
domain experts, end users, and developers to commu-
nicate with one another [6].

Nevertheless, the use of use cases and use case dia-
gram is controversial. Rosenberg and Scott [19] stressed
that one of the early steps in object modeling is building
a use case model. Kulak and Guiney [15] argued that use
cases are the drivers for the rest of the UML diagrams.
Maciaszek [16] stated that use case diagrams and class
diagrams are the most important specification tech-
niques in object-oriented analysis.

On the other hand, Evans [11] argued that use cases
were not part of the design process and that imple-
mentation could not be done on the basis of use cases
solely. Dobing and Parsons [9] identified several prob-
lems with both the application and the theoretical
underpinnings of use cases. For example, they high-
lighted three potential issues: (1) a high degree of variety
in the level of abstraction of use cases, (2) the contro-
versy regarding the “naturalness’ of object models, and
(3) the ideas of use cases facilitating communication
and requirements verification with users. Thus, the roles
and values of the use case diagram are unclear and
debatable.

2.2 Class diagram

A class is a description of a group of objects with similar
properties, common behaviors, common relationships,
and common semantics [19]. Class diagrams represent
the classes (or modules) that comprise a system and the
functions supporting the system, excluding dynamic

information, by showing what classes they are and how
they are related, but not how they interact to achieve
particular behaviors [18]. In short, a class is the
descriptor of a set of objects with the same attributes
and operations. It specifies three aspects; state, behavior,
and object state changes.

Class diagrams describe a system domain in terms of
the kinds of objects within a domain, the attributes, the
behavior that objects can exhibit, and the associations
among these kinds of objects. As Jacobson et al. [13]
noted, “people regard their environment in terms of
objects.” Therefore, it is simple to think in the same
way when designing a model. A model designed using
an object-oriented approach is often easy to under-
stand, as it can be directly related to reality. Thus, with
such a design method, only a small semantic gap will
exist between reality and the model. Booch [4, p. 39]
further stressed that ““in quality object oriented system,
you will find many classes that speak the language of
the domain expert.” These rationales are centered on an
avowal of the naturalness and the ease of understand-
ing of classes.

Class diagrams, however, also have their critics. For
instance, Maciaszek [16] pointed out that classes are
chronically difficult to find, and the properties of classes
are not always obvious. Dobing and Parsons [9] noted
that ‘“‘there are few empirical studies addressing the
ability of users to understand class models.”” They also
postulated that class diagrams alone might not be
appropriate for communicating and verifying require-
ments. However, they added that it might be appropriate
to use class diagrams directly as a mechanism for com-
municating and verifying the structure of application
domain with users. Vessey and Conger [28] also argued
that objects might not provide such a “natural” way of
thinking about a problem domain.

3 Research questions

The literature review clearly shows that there exist
controversial views regarding the role of class diagrams
and use case diagrams during requirements analysis.
One of the key controversies is the values of use case
diagrams in requirements analysis. Are use case dia-
grams valuable in requirements analysis? This question,
however, cannot be settled by argument. Empirical re-
search is warranted to provide evidence and shed light
on this issue.

This study addresses the following research ques-
tions:

1. What are the informational roles and values of use
case diagrams and class diagrams in the context of
requirements analysis?

2. Is there any complementary effect between use case
diagrams and class diagrams, i.e., does the usage of
both models result in a more complete understanding
of the problem domain?

4 Theoretical foundation and research hypotheses
4.1 ACT-R theory

This study finds its theoretical underpinnings in cogni-
tive psychology that is proposed as a reference discipline
for systems analysis and design research by Siau [21-23],
Siau et al. [26], and Siau and Tian [25]. A key model in
cognitive psychology is the well-known human infor-
mation-processing model ACT-R [1], a revised version
of the ACT model. ACT-R consists of a theory of the
nature of human knowledge, and how this knowledge is
deployed and acquired [2]. In brief, ACT-R consists of
declarative and procedural long-term memory, and a goal
stack. Figure 1 shows the ACT-R model.

A reference theory related to the ACT-R model is the
theory of schemata and scripts, which falls under the
dichotomy of propositional-based theories. Proposi-
tional-based theories posit that knowledge is represented
in terms of propositions. Incoming new facts derived or
inferred from the propositions are compared with stored
knowledge. Subsequently, any similarity between these
two knowledge dimensions is accessed. The theory of
schemata and scripts is commonly used to provide
context-dependent problem-solving explanations for
human cognitive processes [29].

4.2 Schemata and scripts

Anderson [1] pointed out that “ACT can simulate the
operation of any schema by the operation of some
production set.” Velenueve and Fedorowicz [29] also
wrote “declarative knowledge can be said to correspond
to schemata and procedural knowledge to scripts.”
Schemata and scripts represent different knowledge
structures. In general, schemata are static representa-

Goal
ACT-R Stack
Push Pop
Conflict Current } Retrieval
Resolution Goal Result
Transform Popped
Goal Goal
Production
Procedural Compilation Declarative
Memory Retrieval Memory
Request
Action Perception

OUTSIDE WORLD

Fig. 1 ACT-R model

231

tions of concepts that model the world, while scripts are
structures that put schemata into action. Schemata em-
body prototypical expectations about objects, situations,
events, and actions. Schemata serve not only as repre-
sentation of knowledge but also act as “filters” to ex-
tract knowledge from memory. Via schemata,
individuals can make accurate inferences and predictions
by capitalizing on the regularities of situations. Sche-
mata are powerful because they help bring in knowledge
relevant to the current environmental situation. In the
context of schemata, instead of accessing many highly
specific pieces of knowledge separately, one can easily
find a single schema that contains sufficient information
to permit adequate interpretation of the situation [29].
All schemata share a common feature—encompassing
variables and representing knowledge on all levels of
abstraction. According to Smith [27], a schema has an
attribute-value format and for each attribute, there are
possible values that instances of the concept can assume.
Within each schema, relations between attributes are
specified. Also, each schema indicates the type or sup-
erset from which the concept is derived.

Scripts are sequences of episodes that take place over
time. Scripts essentially submit to spatial and temporal
dimensions. They imply interpretation of events exe-
cuted at the moment of their instantiation. Due to the
nature of event sequencing, scripts support ‘‘story-tell-
ing” behaviors. Scripts also complement a feature
lacking in schemata—incomplete structures. Schemata

Table 1 Summary of schemata and scripts structures

Cognitive Features

structure

Schemata Hierarchically organized

Attribute-value format

Attributes have a list of possible values
(value domain)

Each attribute has a default value

Some attributes can be interdependent

Each attribute has a weight indicating the
attribute’s relative importance

A schema has an indication of its class
(concept) membership

Schemata bear a notion of contextual information

Schemata filter incoming information when
instantiated

Schemata represent knowledge at all levels of
abstraction

Schemata can embed in each other (subschemata)

Abstract schemata exist at the top of the hierarchy
and have leaner attribute lists

Scripts Action oriented knowledge structures

Scripts sequence the steps in mental processing

Some are pure action scripts that automate
psychomotor behavior

Main focus is on the sequencing of events

Role is to put schemata into action

Scripts’ temporal scope is large
(temporal units are large)

Scripts help in selecting the most appropriate
schemata

Scripts help in confirming selected schemata

232

Table 2 Comparison of schemata and class diagrams

Key concepts Schemata Class diagrams
A single occurrence Schema Instance
A collection of occurrences Class Class

with common features
A collection of occurrences
with different features

Composite schema Aggregation

A descriptive feature Attribute Attribute
Inheritance relationship Inheritance Generalization
Links between objects Embedded schema Associations

Table 3 Comparison of scripts and use case diagrams

Key concepts Scripts Use case diagrams

Action oriented
knowledge structures
Sequencing of events

Scripts Use case diagrams

Spatial-temporal Connection among

dimension of scripts use cases
Put schemata Spatial-temporal Connection among
into action dimension of scripts use cases

categorize knowledge but tend not to support action.
The spatial-temporal dimension of scripts promotes
change and helps to depict concepts in “‘action”. They
subsequently adjust solutions to the problem accord-
ingly.

A summary of schemata and scripts is produced in
Table 1. Also, a comparison of Schemata and class
diagrams is presented in Table 2. Table 3 shows a
comparison of Scripts and use case diagrams.

Although the structures of knowledge are different,
schemata and scripts complement each other well.
Combined, both schemata and scripts represent a pow-
erful learning mechanism. Villeneuve and Fedorowicz
[29] posited that both schemata and scripts are necessary
and they complement one another. As seen from Ta-
bles 2 and 3, schemata correspond closely to class dia-
grams and the functionalities of scripts are similar to
those of use case diagrams. Thus, it can be argued that
use case diagrams and class diagrams, like schemata and
scripts, should complement one another.

4.3 Problem space theory

Problem-space theory is also relevant to explaining the
cognitive activities involved in interpreting information
Fig. 2 Research design

4

Information Model

system models. A problem-space representation allows
the description of a problem, using a search strategy
(mean—ends analysis is the most popular strategy). This
approach is powerful, yet simple, for it corresponds to
human problem-solving domains while fitting well with
computer implementation [17]. We subscribe that the
problem space of a problem domain is broader when
either diagram (use case diagram or class diagram) is
used alone. Supplementing one diagram with another
naturally shrinks the problem space, therefore making
the interpretation easier and more precise because the
problem space is smaller. The reduced problem space
also lowers the probability of making false problem-
solving solutions, while improving the accuracy of
interpretation. The problem-space theory again points
to the complementing effects of use case diagram and
class diagram when these diagrams are used together.

4.4 Research hypotheses

Based on the above discussion, we put forth the fol-
lowing hypotheses:

— H1: The completeness of interpreting class diagrams
and use case diagrams is different.

— H2a: The inclusion of use case diagrams affects the
completeness of the problem domain interpretation
using class diagrams.

— H2b: The inclusion of class diagrams affects the
completeness of the problem domain interpretation
using use case diagrams.

— H3: The sequence combination of the diagrams affects
the completeness of the problem domain interpreta-
tion.

— H4: Perceived Usefulness is different between use case
diagrams and class diagrams.

— HS5: Perceived Ease of Use is different between use
case diagrams and class diagrams.

5 Research design and framework

In this research, we focused on model interpretation.
Siau et al. [26] argued that a model interpretation task is
a task of considerable, though manageable, complexity
and is reasonably within the range of analytic tools we

Performance Measure

- Use Case Diagram
- Class Diagram
- Both diagrams combined

\J

» Completeness of
Interpretation
Perceived usefulness
Perceived ease of use

have available from behavioral research; because of the
intrinsic importance of the task itself, and its tractable
complexity, studies on information model interpretation
are a natural starting point in the behavioral study of
information modeling. The research design is shown in
Fig. 2.

5.1 Research methodology

Experiments capturing subjects’ performance via ques-
tionnaires and process-tracing method [10] were carried
out. Process-tracing techniques have been commonly
used in information requirements specification studies
(e.g., [21, [28]). The key advantage of using process-
tracing techniques is that the data captured is far richer
than data from input—output analysis [28]. Toward the
end of the experimental session, subjects were asked to
fill up questionnaires on the perceived usefulness and
perceived ease of use [8] of the use case diagrams and
class diagrams.

5.2 Subjects

The subjects were university student volunteers who had
completed at least one object-oriented UML course.
Thirty-one subjects were recruited to participate in the
study. These subjects were randomly assigned to one of
the two treatment groups during the experiment. Due to
a technical problem during an experimental session
(audio recorder malfunctioning), the verbal protocol of
one subject was not properly captured and the data from
that subject was discarded from analysis.

A scatter plot diagram and a histogram were created
to test for sample normality. The results indicated a non-
normal distribution. Chebyskev’s Rule was applied to
determine possible outlier(s) in the data set. According
to Brightman and Schneider [7], for non-normal data,
data would rarely fall more than four standard devia-
tions from the group mean. No subject fell outside the
four standard deviations although one subject was very
close. As such, a total of 30 subjects were used for the
data analysis.

Table 4 Experimental design

Treatment Domain

Domain A (ATM) Domain B (music club)
Treatment Sequence 1: Sequence 2:
no. 1 CD —» CD + UC ucC — uUC + CD
Treatment Sequence 2: Sequence 1:
no. 2 UuC - uUC + CD CD —» CD + UC

Domain A is a bank ATM case
Domain B is a music club

UC stands for use case diagram
CD stands for class diagram

233
5.3 Experimental design

The independent variables are: the models (use case
diagram, class diagram, and both diagrams). The
dependent variable is the subject’s performance in
interpreting the requirements depicted by the models.
Table 4 depicts the experimental design.

5.4 Data collection methods and data analysis

Verbal protocol analysis [10], in which subjects were
asked to verbalize their analysis, was administered.
Subjects were asked to think aloud as they interpreted
the use case diagrams and class diagrams. Verbal
utterances of the subjects during the experiment were the
main source of data collection and subsequent analysis.
The experimental session was audiotaped and later
transcribed, coded, and analyzed. Specifically, the taped
protocol analysis processes of the subjects were tran-
scribed to MS word format and itemized.

Itemized information chunks were then coded against
a listing of information chunks depicted on the use case
diagrams and class diagrams. This listing was produced
based on the case analysis of the original source and
verified by two experienced UML instructors. Mapped
chunks of the diagrams were quantified, counted, and
normalized to enable a standardized comparison of the
final data scores.

5.5 Task domain

Two problem domains, each varying in complexity, were
used in the experiment. Variation of the problem do-
main served to achieve generalization of the analysis
results across varying problem domains in practice.
Problem domain A was a system analysis case for an
ATM banking system. Problem domain B was a system
analysis case for a music club. Problem domain B was
more complex than problem domain A. System models,
i.e., the use case diagram and the class diagram, for these
two domains were adopted from existing published
materials to enforce internal reliability of the experi-
mental design. The problem domain A was adopted
from Object Oriented Systems Development using the
Unified Modelign Language by Bahrami [3]. The prob-
lem domain B was adopted from System Analysis and
Design Methods (5th Edition) by Whitten et al. [30].

5.6 Perceived usefulness and perceived ease of use

There are many variables that affect the acceptance or
rejection of information technologies or systems. Two
determinants that are especially important are perceived
usefulness and perceived ease of use. First, perceived
usefulness refers to the tendency of the people using a
system to believe it will help them perform their job

234

Table 5 Results of hypotheses
testing

Hypothesis p-value Supported

H1: The completeness of interpreting <0.001 Y
class diagrams and use case diagrams is different

H2a: The inclusion of use case diagrams affects the >0.05 N
completeness of the problem domain interpretation
using class diagrams

H2b: The inclusion of class diagrams affects the completeness >0.05 N
of problem domain interpretation using use case diagrams

H3: The sequence combination of the diagrams affects the >0.05 N
completeness of the problem domain interpretation

H4: Perceived Usefulness is different between use case >0.05 N
diagrams and class diagrams

HS5: Perceived Ease of Use is different between use >0.05 N

case diagrams and class diagrams

better [8]. It is defined as “‘the degree to which a person
believes that using a particular system would enhance his
or her job performance” [8, p. 320]. Second, perceived
ease of use refers to ““the degree to which a person be-
lieves that using a particular system would be free of
effort” [8, p. 320]. Subjects were asked to respond to the
questionnaires reflecting their responses on perceived
usefulness and perceived ease of use for the two diagram
types (i.e., class diagram and use case diagram) at the
end of the experimental session.

Both measures of “perceived usefulness” and “per-
ceived ease of use” use a Likert-type seven-point re-
sponse format where 1="strongly agree,”
2="“moderately agree,” 3="‘‘slightly agree,” 4="‘neu-
tral,” 5=“slightly disagree,” 6 =‘“‘moderately disagree,”
and 7="“strongly disagree.”

The perceived usefulness and perceived ease of use
questionnaires consist of six questions each. For per-
ceived usefulness, the questions are (1) accomplishes
requirement analysis more quickly, (2) improves
requirement analysis performance, (3) increases pro-
ductivity in requirement analysis, (4) enhances effec-
tiveness in requirement analysis, (5) makes it easier to do
requirement analysis, and (6) useful in requirement
analysis. For perceived ease of use, the six questions are
(1) need to consult modeling manual and/or reference,
(2) easy to model what I want to, (3) easy to understand,
(4) rigid and inflexible to understand, (5) easy to
remember how to do requirement analysis, and (6) easy
to use.

6 Results and discussions

The final data was obtained from counts of matching
information elements identified by the subjects during
protocol analysis. To assure an identical measuring
standard, the counts were normalized—denominators
were total counts of information elements for the inde-
pendent problem domains. These normalized data were
then collapsed into a single data count for the respective
diagram type—class diagram or use case diagram. As
the percentiles of information elements’ counts were
normalized per diagram, the basis of comparison should

be equivalent. These percentiles became the performance
scores and were used for the statistical analysis. ANO-
VA and T-test analysis were used for the statistical
testing. Table 5 summarizes the statistical results.

6.1 Effect of the diagram type analysis

The analysis of the effect of the diagram types on the
completeness of diagram interpretation was done using
an ANOVA analysis, and it indicated a significant sta-
tistical difference of 0.000 (p <0.001). This means that
there is a significant difference between the two diagram
types. Hence, the result supported Hypothesis H1: The
completeness of interpreting class diagrams and use case
diagrams is different. Since the use case diagram has a
higher sample mean than class diagram (0.8655 vs.
0.6464), it means that use case diagrams were interpreted
more completely than class diagrams.

One explanation of the results is the complexity of
class diagrams. The complexity analysis study conducted
by Siau and Cao [24] indicated that class diagram is the
most complex diagram in UML. Specifically, class dia-
grams have the highest complexity in terms of relation-
ship types, property types per technique, and role types.
Cognitive propositions on human memory infer that the
complexity of a problem affects the immediate memory
capacity involved in solving the problem. As a result,
class diagrams may not be as completely interpreted as
use case diagrams.

6.2 Effect of diagram types combination

Two scenarios were examined. The difference scores
between class diagrams alone and class diagrams when
combined with the subsequent use case diagram were
computed i.e., (CD — CD in (CD + UC)). The same
applies to use case diagrams when response scores for
use case diagrams used alone were compared to that of
use case diagrams when class diagrams were added i.e.,
(UC — UCin (UC + CD)). The Paired Samples T-test
explored the effect of the two scenarios proposed: (1)
response scores for the class diagrams alone versus the

response scores for class diagrams after subsequent
addition of use case diagrams, (2) response scores for
use case diagrams alone versus the response scores for
use case diagrams after subsequent addition of class
diagrams. Contrary to initial expectation, neither of the
paired samples showed a significant statistical differ-
ence. The comparison of class diagrams alone versus
class diagrams after the inclusion of use case diagrams
has a significance value of 0.129 (p>0.05) while the
comparison of use case diagrams alone versus the use
case diagrams after the inclusion of class diagrams has a
significance value of 0.095 (p > 0.05). Hence, we rejected
the hypothesis H2a: the inclusion of use case diagrams
affects the completeness of the problem domain inter-
pretation using class diagrams, and hypothesis H2b: the
inclusion of class diagrams affects the completeness of
the problem domain interpretation using use case dia-
grams. Specifically, the inclusion of a subsequent dia-
gram type does not affect the completeness of
interpretation rendered by the initial diagram type. The
complementary effect of the inclusion of either diagram
type is not significantly different.

The results show that the inclusion of an additional
diagram did not help the subjects to gain significantly
more information on the given diagram. Thus, it ap-
pears that the information depicted by the two diagram
types is sufficiently different and not overlapping. From
the Problem Space Theory perspective, the problem
space for use case diagram and the problem space for
class diagram have little overlap or no overlapping. As
a result, the additional information provided by the
inclusion of another diagram did not help in inter-
preting the given diagram. From hindsight, this is not
surprising as the use case and class diagrams are
designed to capture different aspects of a problem
domain.

6.3 Sequence combination effect

Sequence 1 employed the class diagram interpretation
prior to the subsequent combination with the use case
diagram (CD — CD + UC) while sequence 2 em-
ployed the use case diagram prior to the combination
with the class diagram (UC — UC + CD). The
ANOVA test on the effect of sequence combination
indicates an insignificant statistical difference of 0.684
(p>0.05). Hence the hypothesis H3: the sequence com-
bination of the diagram interpretation affects com-
pleteness of the problem domain understanding is not
supported.

Dobing and Parsons [9] stated that the process for
moving forward from the use case diagram to identify
classes is neither universally accepted, even among use
case adherents, nor does it appear to be clearly defined
or articulated. This argument is partially supported in
our study as the sequence appears to have no effect on
the interpretation of the diagrams.

235

6.4 Cronbach’s alpha for perceived usefulness
and perceived ease of use

Cronbach’s Alpha was computed for the Perceived
Usefulness and Perceived Ease of Use questionnaires.
Prior to the item adjustment, the Perceived Usefulness
questionnaire had a Cronbach’s Alpha of 0.9462.
However, Cronbach’s Alpha reliability estimate for the
Perceived Ease of Use questionnaire was not as high. In
fact, it showed a somewhat low reliability of 0.6560.
Based on the reliability analysis for Perceived Ease of
Use questionnaire, it is justifiable to delete item (4),
because the item-total correlation is as low as 0.1571 and
the alpha will increase to 0.7115 if this item is deleted.
Deflation of the item-total correlation for item (4) may
have occurred due to its reversal phrasing. Item (4) is a
reversal item and would have possibly confused the
subjects. Subsequently, final scores for the five remain-
ing questions and the final total scores for the Perceived
Ease of Use questionnaire were revised after deletion of
item (4).

6.5 Perceived usefulness

The ANOVA analysis shows an insignificant value of
0.474. Hence, there is no statistical difference between
class diagrams and the use case diagrams for perceived
usefulness. This does not support the hypothesis H4:
Perceived Usefulness is different between use case dia-
grams and class diagrams. The scores of perceived use-
fulness are mostly three or below (i.e., a lower number
represents a higher perceived usefulness). In other
words, the subjects perceived both the use case and class
diagrams to be useful in helping them to understand the
problem domain.

6.6 Perceived ease of use

The ANOVA test shows a nonsignificant level of
0.613 at p-level > 0.05. In other words, there is no sig-
nificant difference in the perceived ease of use between
class diagrams and use case diagrams. hypothesis H5:
Perceived Ease of Use is different between use case
diagrams and class diagrams is not supported.

This result is somewhat surprising because the use
case diagram is less complex than the class diagram [24].
Also, the interpretation of the use case diagram is more
complete than the class diagram (i.e., Hypothesis 1). One
possible explanation is that responses are perceptual in
nature and the result may be caused by limitation of self-
reported responses. Most subjects scored three or less
on a seven-point scale (i.e., a lower number represents a
higher perceived ease of use). This may indicate a pos-
sible ceiling effect—Dboth diagrams were perceived to be
very easy to use and the scale could not capture the
difference. The ceiling effect is another possible expla-
nation. As these were subjects with at least a semester of

236

training in UML, they might have perceived both dia-
grams as easy to use.

6.7 Limitations of the study

Due to the labor-intensive nature of protocol analysis, a
small sample size was used. The majority of verbal
protocol studies have utilized a relatively small sample
size [20]. A small sample size reduces statistical power
for comparison. However, the statistical power problem
was partly alleviated by testing the subjects with two
pairs of diagrams. The order of presenting the diagrams
was alternated to reduce any possible order bias. An-
other limitation associated with the protocol analysis is
the coding process. The coding process was not auto-
mated but was performed manually by human coder(s).
Biases could have been introduced into the study results
although care was taken to ensure objectivity in the
coding process. Despite these potential limitations,
analysis of protocol data has proved to be effective in
providing us useful data to investigate the research
questions.

7 Implications and conclusions

This research centers on investigating the roles of use
case diagrams and class diagrams in requirements
analysis. The findings of this research have some impli-
cations for practitioners. The results of the study show
that use case diagrams were interpreted more completely
than class diagrams. This seems to imply that use case
diagrams are easier to interpret than class diagrams, thus
enabling the subjects to attain a more complete under-
standing of the model. The study by Siau and Cao [24]
also found that class diagrams and use case diagrams
differ in their diagrammatic complexity. Class diagrams
have a higher diagrammatic complexity. Use case dia-
grams are comparatively less complex and presumably
easier to understand. This suggests that it is probably
better to discuss systems requirements with end users
using use case diagrams rather than class diagrams.
Kulak and Guiney [15] also stressed that the simplicity
of use case diagrams makes them a great communication
tool. The lower complexity level of use case diagrams
will facilitate end users’ understanding of the systems.

For instructors who are teaching UML, the results of
this study suggest that it may be good to start off with
teaching the use case diagram as it is probably easier for
students to comprehend than the class diagram.

For researchers in UML, we suggest that they con-
sider replicating this study or carrying out similar studies
using different research methodologies. For example,
similar studies based on novice and experienced users
should be carried out to validate the outcome of the
present findings. It would also be interesting to consider
investigating the rest of the modeling diagrams in UML,
such as activity diagram, sequence diagram, and state-

chart diagram. Determining the core UML diagrams
and the core constructs in each diagram are other
interesting topics in the area. As UML becomes more
and more complex with each version, there is a need to
focus on the core diagrams and the core con-
structs—particularly in teaching. Research aiming to
identify the core of UML may also help to contribute to
the development of UML standard.

The insignificant statistical results of some of the
hypotheses may point to the fact that class diagrams and
use case diagrams capture different aspects and views of
the problem domains. As such, we assert a need for the
coexistence of class diagrams and use case diagrams for
effective requirements analysis. Given that there is no
significant difference between the sequences of interpre-
tation, we may argue that the order in which the dia-
grams are used or constructed during requirements
analysis may not be important. One may even argue that
both diagrams may need to be constructed concurrently
and modified iteratively.

Finally, we believe that both use case and class dia-
grams are valuable in the requirement analysis process.
As the information content of use case and class dia-
grams are different and arguably complementary, two is
better than one!

References

1. Anderson JR (1983) The architecture of cognition. Harvard
University Press, Cambridge

2. Anderson JR, Lebiere C (1998) The atomic components of
thought. Erlbaum, Mahwah

3. Bahrami A (1999) Object oriented systems development using
the unified modeling language. Irwin McGraw-Hill, Boston

4. Booch G (1996) Object solutions: managing the object oriented

project. Addison-Wesley, Reading

. Booch G (1999) UML in action. Commun ACM 42(10):27-28

. Booch G, Rumbaugh J, Jacobson I (1999) The unified model-

ing language user guide. Addison-Wesley, Reading

7. Brightman H, Schneider H (1992) Statistics for business
problem solving. South-Western Publishing Co, Cincinnati

8. Davis F (1989) Perceived usefulness, perceived ease of use, and
user acceptance of information technology. MIS Q September
:319-339

9. Dobing B, Parsons J (2000) Understanding the role of use cases
in UML: a review and research agenda. J Database Manag
11(4):28-36

10. Ericsson K, Simon H (1993) Protocol analysis: verbal reports as
data, rev edn. MIT Press, Cambridge

11. Evans GK (1999) Why are use cases so painful? Thinking
Objects 1(2). http://evanetics.com/articles/Modeling/UCPain-
ful.htm. Cited on 30 September 2004

12. Hesse W (2000) RUP—a process model for working with
UML? Critical comments on the rational unified process. In:
Siau K, Halpin T (eds) Unified modeling language: systems
analysis, design, and development issues. Idea Group Publish-
ing, Hershey

13. Jacobson I, Christerson M, Jonsson P, Overgard G (1992)
Object oriented software engineering: a use case driven ap-
proach. Addison-Wesley, Reading

14. Krogstie J (2000) Using a semiotic framework to evaluate
UML for the development of models of high quality. In Siau K,
Halpin T (eds) Unified modeling language: systems analysis,
design, and development issues. Idea Group Publishing, Her-
shey

15.

16.

17.
18.
19.
20.

21.

22.
23.

Kulak D, Guiney E (2000) Use cases—requirements in context.
Addison Wesley, Reading

Maciaszek LA (2001) Requirements analysis and system de-
sign. Developing information systems with UML. Addison-
Wesley, Reading

Mayer R (1991) Thinking, problem solving, cognition. W.H.
Freeman

Pooley R, Stevens P (1999) Using UML.: software engineering
with objects and components. Addison-Wesley, Harlow
Rosenberg D, Scott K (1999) Use case driven object modeling
with UML: a practical approach. Addison-Wesley, Reading
Schenk KD, Vitalari NP, Davis KS (1998) Differences between
novice and expert system analysts: what do we know and what
do we do? J Inf Syst 15(1):9-50

Siau K (1996) Empirical studies in information modeling:
interpretation of the object relationship. Unpublished PhD
Dissertation, University of British Columbia

Siau K (1999) Information modeling and method engineering:
a psychological perspective. J] Database Manag 10(4):44-50
Siau K (2004) Informational and computational equivalence in
comparing information modeling methods. J Database Manag
15(1):73-86

24.

25.

26.

217.

28.

29.

30.

237

Siau K, Cao Q (2001) Unified modeling language—a com-
plexity analysis. J Database Manag 12(1):26-34

Siau K, Tian Y (2001) The complexity of unified modeling
language—a GOMS analysis. In: 14th international conference
on information systems (ICIS’01), New Orleans, 16-19
December 2001, pp 443-448

Siau K, Wand Y, Benbasat I (1997) The relative importance of
structural constraints and surface semantics in information
modeling. Inf Syst 22(2/3):155-170

Smith EE (1989) Concepts and inductions. In: Posner MI (ed)
Foundations of cognitive science. MIT Press, Cambridge
Vessey 1, Conger S (1994) Requirements specification: learning
object, process, and data methodologies. Commun ACM
37:102-113

Villeneuve A, Fedorowicz J (1997) Understanding expertise in
information systems design, or, what’s all the fuss about ob-
jects? Decis Support Syst 21:111-131

Whitten JL, Bentley LD, Dittman KC (2001) System analysis
and design methods. McGraw-Hill Irwin, Boston

