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Reducing Data Hazards on Multi-pipelined DSP Architecturewith Loop SchedulingSISSADES TONGSIMA, CHANTANA CHANTRAPORNCHAI, EDWIN H.-M. SHAfstongsim,cchantra,eshag@cse.nd.eduDept. of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556NELSON L. PASSOSfpassosn@nexus.mwsu.eduDept. of Computer Science, Midwestern State University, Wichita Falls, TX 76308Received ??; Revised ??Editors: ??Abstract. Computation intensive DSP applications usually require parallel/pipelined processors in or-der to meet speci�c timing requirements. Data hazards are a major obstacle against the high performanceof pipelined systems. This paper presents a novel e�cient loop scheduling algorithm that reduces datahazards for such DSP applications. This algorithm has been embedded in a tool, called SHARP, whichschedules a pipelined data 
ow graph to multiple pipelined units while hiding the underlying data haz-ards and minimizing the execution time. This paper reports signi�cant improvement for some well-knownbenchmarks showing the e�ciency of the scheduling algorithm and the 
exibility of the simulation tool.1. IntroductionIn order to speedup current high performanceDSP systems, multiple pipelining is an importantstrategy that should be explored. Nonetheless,it is well-known that one of the major problemsin applying the pipelining technique is the de-lay caused by dependencies between instructions,called hazards. Control hazards are known as thehazards that prevent the next instruction in theinstruction stream from being executed, such asbranch operations. Likewise, the hazards that en-cumber the next instruction by data dependen-cies are called data hazards. Most computation-intensive scienti�c applications, such as image pro-cessing, and digital signal processing, contain agreat number of data hazards and few or no controlhazards. In this paper, we present a tool, called

SHARP (Scheduling with Hazard Reduction formultiple Pipeline architecture), which was devel-oped to obtain a short schedule while minimiz-ing the underlying data hazards by exploring looppipelining and di�erent multiple pipeline architec-tures.Many computer vendors utilize a forwardingtechnique to reduce the number of data hazards intheir architectures. This process is implementedin hardware whereby a copy of the computed re-sult is sent back to the input prefetch bu�er ofthe processor. However, the larger the numberof forwarding bu�ers, the higher the cost thatwill be imposed on the hardware. Therefore,there exists a trade-o� between its implementa-tion cost and the performance gain. Further-more, many modern high speed computers, suchas MIPS R8000, IBM Power2 RS/6000 and oth-



2 ??ers, use multiple pipelined functional units (multi-pipelined) or superscalar (super)pipelined archi-tectures. Providing a tool that determines an ap-propriate pipelined architecture for a given spe-ci�c application, therefore, will be bene�cial tocomputer architects. By using such a tool, one can�nd a suitable pipeline architecture that balancesthe hardware and performance costs by varyingthe system architecture (e.g., a number of pipelineunits, type of each unit, forwarding bu�ers, etc.).Rearranging the execution sequence of tasksthat belong to the computational application canreduce data hazards and improve the perfor-mance. Dynamic scheduling algorithms such astomasulo and scoreboard are examples of imple-menting the algorithms in hardware. They wereintroduced to minimize the underlying data haz-ards which can not be resolved by a compiler [16].These techniques, however, increase the hardwarecomplexity and costs. Therefore, special consid-eration should be given to static scheduling, es-pecially for some computation-intensive applica-tions. The fundamental performance measure-ment of a static scheduling algorithm is the totalcompletion time in each iteration, also known asthe schedule length. A good algorithm must beable to maximize parallelism between tasks andminimize the total completion time. Many heuris-tics have been proposed to deal with this prob-lem, such as ASAP scheduling, ALAP schedul-ing, critical path scheduling and list schedulingalgorithms [2, 3]. The critical path, list schedul-ing and graph decomposition heuristics have beendeveloped for scheduling acyclic data 
ow graphs(DFGs) [7, 14]. These methods, however, do notconsider the parallelism and pipelining across it-erations. Some studies propose scheduling algo-rithms to deal with cyclic graphs [5, 15]. Never-theless, these techniques do not address the issueof scheduling on pipelined machines that exploitthe use of forwarding techniques.Considerable research has been done in thearea of loop scheduling based on software pipelin-ing|a �ne-grain loop scheduling optimizationmethod [6, 10, 12]. This approach applies the un-rolling technique which expands the target codesegment. The problem size, however, also in-creases proportionally to the unrolling factor. It-erative modulo scheduling is another framework

that has been implemented in some compilers [13].Nonetheless, in order to �nd an optimized sched-ule, this approach begins with an infeasible initialschedule and has to reschedule every node in thegraph at each iteration.The target DSP applications usually contain it-erative or recursive code segments. Such segmentsare represented in our new model, called a pipelinedata-
ow graph (PDG). An example of a PDG isshown in Figure 1(b). In this model, nodes repre-sent tasks that will be issued to a certain typeof pipeline and edges represent data dependen-cies between two nodes. A weight on each edgerefers to a minimum hazard cost or pipeline cost.This cost represents a required number of clockcycles that must occur in order to schedule suc-cessive nodes. In this work, a proposed novelpipeline scheduling algorithm, SHARP, takes aPDG and some pipeline architecture speci�ca-tions (e.g., pipeline depth, number of forwardingbu�ers, type and number of pipeline units etc.)as inputs. The algorithm then e�ciently sched-ules nodes from the PDG to the target system.After the initial schedule is computed, by aDAG scheduling algorithm such as list schedul-ing, the algorithm implicitly uses retiming. Onlya small number of nodes are rescheduled in eachiteration of our algorithm. The new schedulingposition is obtained by considering data depen-dencies and loop carried dependencies, i.e., usingloop pipelining strategy as a basis to reduce datahazards while improving the total execution timeunder the hardware constraints given by the userspeci�cations.As an example, Figure 1(a) presents twopipeline architectures each of which consists of �vestages: instruction fetch (IF), instruction decode(ID), execution (EX), memory access (M) andwrite-back (WR). For simplicity, assume that eachof these stages takes one clock cycle to �nish [4].The pipeline hazard in this case is 3, since withthis architecture, any instruction will put dataavailable to read in the �rst half of the 5th stage(WR) and read it in the 2nd stage (ID). In Sec-tion 2, we will explain how to calculate this costin more detail. The PDG and its correspondingcode segment to be executed in this two-pipelinesystem are shown in Figures 1(b) and (c) respec-tively. Notice that each node of the graph alsoindicates the type of instruction required to be ex-
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      (E)  E[i] = D[i-2] * 2
      (B)  B[i] = A[i] + 3
      (C)  C[i] = A[i] + E[i]
      (D)  D[i] = B[i] * C[i]

      (A)  A[i] = D[i-2] + 2      
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(a) (b)Fig. 2. (a) Pipeline execution pattern (b) An equivalent scheduleecuted. Assume that the WR and ID stages of twodependent instructions can be overlapped. For ex-ample, instruction B can start reading (at the IDstage) data produced by instruction A at the WRstage. A legal execution pattern of the pipelinefor this example is illustrated in Figure 2(a).Since all the pipeline stages of issued instruc-tions are consecutive, only the beginning of eachinstruction pipeline is required to be shown. Fig-ure 2(b) illustrates a schedule table resulting fromFigure 2(b). This table only shows one iterationof the sample code segment (the complete tablecomprises of M � 3 identical copies of this table).Such a schedule becomes an initial schedule whichcan be optimized by SHARP. Figure 3(a) and 3(b)show the resulting intermediate PDG and sched-ule after applying SHARP to the initial sched-ule. Nodes A and E from the next iteration arerescheduled to current iteration of the schedule.This is equivalent to retiming these nodes in the

PDG (see Figure 3(a)). This technique exploresthe parallelism across iterations (loop pipelining).SHARP repeatedly applies such a method to eachintermediate schedule. Figures 3(c) and 3(d) showthe third intermediate retimed PDG and its sched-ule respectively. At the third iteration we obtainthe optimized schedule with length 6 (a 25% im-provement over the initial schedule).Using our tool, we obtain not only the reducedschedule length but we can also evaluate other ar-chitecture options, such as introducing forwardinghardware in the architecture or even additionalpipelines. In order to present our algorithm, theremainder of this work is organized as follows:Section 2 introduces some fundamental concepts.The main idea and theorems behind the algorithmused in SHARP are presented in Section 3. InSection 4, we discuss the experimental results ob-tained by applying di�erent pipeline architecturesto this tool. Finally, Section 5 draws conclusionsof this work.
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(b) (c) (d)(a)Fig. 3. (a)-(b) PDG and schedule of intermediate step of the algorithm, (c)-(d) PDG and the schedule after third step2. BackgroundA cyclic DFG, G = hV;Ei, is commonly used torepresent dependencies between instructions in aniterative or a recursive loop. However, it does notre
ect the type of pipeline architecture to whichthe code segment is subjected. Therefore, in or-der to distinguish them, some common hardwarefactors need to be considered.The type of architecture may be characterizedby considering di�erent types of pipelines in thesystem. The number of stages in a pipeline, orpipeline depth, is one con�guration factor that isnecessary to be taken into account, since it af-fects the overall pipeline speedup. The forwardinghardware is also a factor because it can diminishthe data hazards. Furthermore, the system mayconsist of a number of forwarding bu�ers, respon-sible for how many times a pipeline is able to by-pass a datum [9].In this paper, we assume our algorithm guar-antees that no delays occur during the executionof one instruction. In other words, the number ofcycles from the execution of the �rst to the lastpipeline stage for one instruction is equal to thepipeline depth. In a multi-pipelined machine, ifthe execution of an instruction I2 depends on thedata generated by instruction I1, and the startingmoment of I1 and I2 are t1 and t2 respectively, weknow that t2�t1 � Sout�Sin+1, where Sout is theindex of the pipeline stage from which the data isvisible to the instruction I2, and Sin is the index ofpipeline stage that needs the result of I1 in orderto execute I2. We call Sout � Sin + 1 the pipelinecost of the edge connecting the two nodes, repre-senting instructions I1 and I2. Figure 4 illustrates

the concept of the pipeline cost. Such a cost canbe quali�ed in three possible situations dependingon the characteristics of the architecture:case 1: The pipeline architecture does not havea forwarding option. The pipeline cost issimilar to the data hazard, which may becalculated from the di�erence between thepipeline depth and the number of the over-lapped pipeline stages. For example in Fig-ure 4(a), this pipeline reads data at the endof ID and the data is ready after WR. TheSout stage is 7 and Sin is 3. Hence, for thiscase, the pipeline cost is 7� 3 + 1 = 5.case 2: The pipeline architecture has an internalforwarding, i.e., data can merely be bypassedinside the same functional unit. The pipelinecost from this case may be obtained in a simi-lar way as above. For instance, the pipeline inFigure 4(b) has the internal forwarding suchthat the data will be available right after theEX stage. Then, Sout is stage 5 and Sin isstage 3, so the pipeline cost is 5� 3 + 1 = 3.In this case, the special forwarding hardwareis characterized into two sub-cases.1. The forwarding hardware has a limitednumber of feedback bu�ers. The pipelinecost will be the value without forwardingwhen all the forwarding bu�ers are uti-lized.2. The forwarding hardware has an unlim-ited number of feedback bu�ers (boundedby the pipeline depth). In this case, thepipeline cost will always be the same.case 3: The pipeline architecture has an externalor cross forwarding hardware, such as it iscapable of passing data from one pipeline to
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Fig. 4. (a) Pipeline cost w/o forwarding hardware (b) Pipeline cost w/ forwarding capabilityanother pipeline. We calculate the pipelinecost by the same way described above. Again,limited number of bu�ers or unlimited numberof bu�ers are possible sub-cases.2.1. Graph ModelIn order to model the con�guration of each multi-pipelined machine associated with the problem be-ing scheduled, the pipeline data-
ow graph is in-troduced.De�nition 1. A pipeline data-
ow graph(PDG) G = hV;E; T;d; ci is an edge-weighted di-rected graph, where V is the set of nodes, E 2V � V is the set of dependence edges, T is thepipeline type associated with a node u 2 V , dis the number of delays between two nodes, andc(e) = (cfo ; cno) is a function from E to the pos-itive integers representing the pipeline cost, asso-ciated with edge e 2 E, where cfo and cno are thecost when considering with and without forward-ing capability respectively.Each node in a PDG represents an instruction,and the type of pipeline in which the instructionwill be executed. An edge from node u to nodev, exhibited by the notation u ! v, conveys thatthe instruction v depends on the result from theinstruction u. The number of delays d(e) on anyedge e 2 E such that u precedes v, where u; v 2 V ,indicates a data dependence from node u to v,such that the execution of node v at iteration jrelies on the data produced by node u at iterationj � d(e). The tuple associated with each edgein a PDG, u (cfo;cno)�! v, is architecture-dependentwhere cfo is the number of clock cycles required

when there exists a forwarding hardware, and cnois the number of clock cycles needed when execut-ing the two instructions u and v considering noforwarding. If there is no forwarding hardware,the value of cfo will be the same as cno .As an example, Figure 5(a) illustrates a sim-ple PDG associated with two types of functionalunits, adder and multiplier. Each of which is a�ve-stage pipeline architecture with a forwardingfunction. Therefore, the pipeline costcfo = 1 and cno = 3. Nodes A;B;C;D, andF represent the addition instructions and node Eindicates the multiplication instruction. The barlines on D ! A and F ! E represent the numberof delays between the nodes, i.e., two delays onD ! A conveys that the execution of operationD at some iteration j produces the data requiredby A at iteration j + 2.2.2. Initial Scheduling in SHARPIn this subsection, we introduce some importantconsiderations in acquiring a static pipeline sched-ule from the PDG. Considerable research hasbeen conducted in seeking a scheduling solutionfor a DFG [8]. In this research, we tailor the listscheduling heuristic so that it agrees with condi-tions of the PDG.A static schedule consists of multiple entries in atable. Each row entry indicates one clock cycle|the synchronization time interval, also called con-trol step. Each column entry represents one of thepipeline units in the multi-pipelined system wherenodes that have the same corresponding types ofpipeline will be assigned. The �rst pipeline stageof each scheduled node starts executing wheneverthe node appears in the table.
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Fig. 5. (a) Example when cfo = 1 and cno = 3 (b) Corresponding initial schedule (c)-(d) PDG with inter-iterationdependency between node A and BIn order to obtain a static schedule from a PDGfeedback edges (i.e., edges that contain delays)are temporarily ignored in this initial schedulingphase. For instance, D ! A and F ! E in Fig-ure 5(a) are temporarily ignored. Our schedulingguarantees the resulting initial schedule is legal bysatisfying the following properties. Further, thefollowing scheduling properties must be preservedby any scheduling algorithm.Property 1. Scheduling properties for intra-iteration dependencies1. For any node n preceded by nodes mi by edgesei such that d(ei) = 0 and mi (cfoi ;cnoi)�! n.If cs(mi) is the control step to which mi wasscheduled and bi is the number of availablebu�ers for the functional unit required by mi,then node n can be scheduled at any controlstep (cs) that satis�es the following rules.cs � maxi fcs(mi) + cost(bi)gwhere� cost(bi) = cfo if bi > 0cost(bi) = cno otherwise2. If there is no direct-dependent edge betweennodes q and r, i.e. d(e) 6= 0, and q is scheduledto control step k, node r may be placed at anyunoccupied control step which does not con
ictwith any other data dependency constraints.Note that if the architecture does not use forward-ing hardware, then we set cfo = cno and bi = 0.As an example, Figure 5(b) presents the resulting

schedule table when we schedule the graph shownin Figure 5(a) to a multiple pipelined system con-sisting of one adder and one multiplier with oneinternal bu�er for each unit.The last step of initial scheduling is to checkthe inter-iteration dependency which is implicitlyrepresented by the feedback edges of the PDG.A certain amount of empty control steps has tobe preserved at the end of the schedule table ifthe number of control steps between two inter-dependent nodes belonging to di�erent iterationsis not su�cient to satisfy the required pipelinecost of the two corresponding instructions. Fig-ures 5(c) and (d) illustrates this situation. As-sume that the pipeline depth of the adder is 5. Ifwe did not consider the feedback edge, the sched-ule length would be only 4. However, the schedulelength actually has to be 6 since node A in thenext iteration, represented by A2, cannot be as-signed to the control step right after node B1 dueto the inter-iteration dependency between nodesA and B. Hence two empty control steps need tobe inserted at the end of this initial schedule andthe �nal schedule length becomes six rather thanfour.Note again that the execution of all pipelinestages, except for the �rst one, of any schedulednode are hidden in an initial schedule table. Thosestages are overlapped and only the �rst stage ofeach node is displayed, e.g., see Figure 2(a). Afterapplying a list scheduling algorithm that enforcesProperty 1 to the example in Figure 1, the initialschedule of Figure 2(b) is produced. The staticschedule length for that case is 8.



?? 73. Reducing Schedule LengthIn the previous section, we discussed the schedul-ing conditions for assigning nodes from a PDG toa schedule table. These conditions are also appliedto the optimization process of our algorithm. Ouralgorithm is able to reduce the underlying staticschedule length of an initial schedule previouslyobtained. It explores the parallelism across iter-ations by implicitly employing the retiming tech-nique [11]. The following section brie
y reviewsthe retiming and rotation techniques.3.1. Retiming and RotationThe retiming technique is a commonly used toolfor optimizing synchronous systems. A retim-ing r is a function from V to Z . The value ofthis function, when applied to a node v, is thenumber of delays taken from all incoming edgesof v and moved to its outgoing edges. An ille-gal retiming function occurs when one of the re-timed edge delays becomes negative. This situ-ation implies a reference to a non-available datafrom a future iteration. Therefore, if we considerGr = hV;E; T;dr; ci to be a PDG G retimed bya function r, a retiming is legal if the retimed de-lay count dr is nonnegative for every edge in E.For an edge u ! v, the number of additional de-lays is equal to the number of delays moved to theedge through node u, subtracted by the numberof delays drawn out from the edge through nodev. The retiming technique can be summarized bythe following properties:Property 2. Let Gr = hV;E; T;dr; ci be aPDG G = hV;E; T;d; ci retimed by r.1. r is a legal retiming if dr(e) � 0 for everye 2 E.2. For any edge u e! v, we have dr(e) = d(e) +r(u)� r(v).3. For any path u p; v, we have dr(p) = d(p) +r(u)� r(v).4. For a loop l, we have dr(l) = d(l).Property 2 demonstrates how the retimingmethod operates on a PDG. An example of retim-

ing is shown in Figure 6. The retiming r(A) = 1conveys that one delay is drawn from the incomingedge of node A and pushed to all of its outgoingedges, A! B and A! C.After a graph has been retimed, a prologue is theset of instructions that must be executed to pro-vide the necessary data for the iterative process.In our example, the instruction A becomes theprologue. An epilogue is the other extreme, wherea complementary set of instructions will need tobe executed to complete the process. The timerequired to run the prologue and epilogue is as-sumed to be negligible when compared to the totalcomputation time of the problem.Chao, LaPaugh and Sha proposed a 
exible al-gorithm, called rotation scheduling, to deal withscheduling a DFG under resource constraints [1].Like its name, this algorithm analogously movesnodes from the top of a schedule table to its bot-tom. The algorithm essentially shifts the itera-tion boundary of the static schedule down, so thatnodes from the next iteration can be explored. Wenow introduce some necessary terminology andconcepts used in this paper.De�nition 2. Given a PDG G = hV;E; T;d; ciand R � V , the rotation of R moves one delayfrom every incoming edge to all outgoing edges ofnodes in R. The PDG now is transformed into anew graph (GR).For a schedule table with length L, this de�ni-tion is applicable when moving the �rst row of theschedule table to the position L + 1. Therefore,this operation implicitly retimes the graph. Thebene�t of doing the rotation is that a few num-ber of nodes are rescheduled. Therefore only asmall part of an input graph is modi�ed instead ofrescheduling the whole graph. Rotation schedul-ing must preserve the following property:Property 3. Let G = hV;E; T;d; ci be a PDGand R � V . A set R can be legally retimed if andonly if every edge from V � R to R contains atleast one delay.This property implies that the rotation opera-tion always preserves Property 2. After perform-ing the rotation strategy, the dependencies in anew graph are changed, since some delays in the
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ow graph (a) Original (b) When r(A) = 1graph are now moved to new edges. This allowsus to explore the possibility of parallelizing thosenodes that do not have a direct-dependent edgefrom their predecessors. Carefully re-schedulingthose rotated nodes to new positions, the sched-ule length can be decreased.Nevertheless, as mentioned earlier, we also haveto consider the inter-iteration dependency. Hencea new schedule position assignment for a node hasto be carefully chosen to avoid con
icts in thedependency constraint between iterations. Find-ing a valid scheduling position now becomes morecomplex since the problem now has incorporatedpipeline hazards. The major di�erent from thetraditional algorithm is that our algorithm re-quires checking not only dependencies of the newgraph after rotating a node but also pipeline haz-ards which may occur only if schedule a node todi�erent processors. The following section dis-cusses how to �nd such a dependency and avoidingthe underlying pipeline hazards in detail.3.2. Minimum Schedule LengthWe know that a number of delays on any edgeu ! v, where u; v 2 V , indicates in which itera-tion, prior to the current iteration, node u legallyproduces data for node v. This conveys that inorder to schedule the rotated nodes, the pipelinecost constraints must also be satis�ed, e.g., theinter-iteration dependency between nodes u andv.De�nition 3. Given a PDG G = hV;E; T;d; ciand nodes u; v 2 V where u ! v 2 E, the min-imum schedule length with respect to nodes uand v, ML(u; v), is the minimum schedule length

required to comply with all data-dependent con-straints.The following theorem presents the ML func-tion.Theorem 1. Given a PDG G = hV;E; T;d; ci,an edge e = u ! v 2 E, and d(e) = k for k > 0,a legal schedule length for G must be greater thanor equal to ML(u; v), whereML(u; v) = �pipe cost + cs(u)� cs(v)k �with cs(node) being the starting control step ofthat node and pipe cost is either cno or cfo de-pending on the architecture.Proof: Let L be the schedule length for oneiteration. We know that the minimum number ofcontrol steps between node u at iteration j andnode v at iteration j + k is the pipeline cost as-sociated with u ! v. There are k � 1 iterationsbetween iterations j and j+k. Since all iterationshave the same length L, the following equation isthe relationship of the distance between cs(u) andcs(v): L � (k � 1) + (L � cs(u)) + cs(v) + � �pipe cost where � represents a number of com-pensated control steps ful�lling the pipeline costrequirement. Hence, � can be expressed as: � �pipe cost �L� (k� 1)�L+ cs(u)� cs(v). In or-der to obtain a uniform schedule, � is distributedover all k iterations preceding iteration i+k. Thisdistribution results in a minimum value � = d�k e,and the new static schedule length that satis�esthe constraints with respect to u is ML = � + L.After substituting, we obtainML(u; v) = �pipe cost + cs(u)� cs(v)k �



?? 91. Algorithm: SHARP2. Input: G = hV;E; T;d; ci, # forwarding bu�ers, and # pipelines3. Output: shortest schedule table S4. S := Initial-Schedule(G), Q := S;5. for i := 1 to jV j6. (G;S) :=Pipe rotate(G);7. if length(S) < length(Q)8. then Q := S; Fig. 7. SHARP framework1. Procedure: Pipe rotate2. Input: PDG, input schedule3. Output: Resulting schedule4. N := Deallocate(S); /* extract nodes from the table */5. Gr := Retime(G;N); /* retime nodes in N */6. S := Re-schedule(G;S;N);7. return(Gr; S); Fig. 8. Pipeline rotation scheduling routine1. Procedure: Re-schedule2. Input: PDG (G), set or rotated nodes (N), input schedule (S)3. Output: Resulting schedule4. foreach v 2 N do5. csmin := maxfparent(v):cs+ cost(parent(v):bi)g;6. csmax := length(S); /* get schedule length */7. cs := csmin;8. while (cs < csmax) do9. increment cs and processor number pid until �nding10. the �rst \legal" processor available between cs and csmax11. if cs � csmax then12. do nothing13. else14. schedule node v to the resulting cs and pid obtained aboveFig. 9. Routine for re-mapping nodes to a scheduleSince a node may have more than one prede-cessor, in order to have a legal schedule length,one must consider the maximum value of ML. Inother words, the longest schedule length that isproduced by computing this function will be theworst case that can satisfy all predecessors.
3.3. AlgorithmThe scheduling algorithm used in SHARP ap-plies theML function to check if a node can legallybe scheduled at a speci�c position. Therefore, itmay happen that the obtained schedule will re-quire some empty slots to be added to compensatefor the inter-iteration dependency situation. Wesummarize this algorithm in Figures 7{9 whereFigures 8 and 9 show how we implement the twoimportant optimization functions Pipe rotate andRe-schedule in SHARP. Note again that the ini-tial schedule in the algorithm can be obtained by
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(a) (b) (c)Fig. 10. (a) The 6-node PDG (b) the �rst optimized schedule table and (c) the �nal scheduleany DAG scheduling algorithm, e.g., a modi�edlist scheduling that satis�es Property 1. Next, theprocedure Pipe rotate is applied to shorten theinitial schedule table. It �rst deallocates nodesfrom the schedule table. These nodes are thenretimed and consequently rescheduled. The pro-cedure Re-schedule �nds a proper position suchthat the schedule length will not exceed the pre-vious length. A scheduling position has to satisfyProperty 1 and Theorem 1. This process is com-puted in the while loop (Lines 8{10) which cal-culates an appropriate control step considering apipeline cost and bu�er size as well as ML. Then,if the obtained control step is smaller than the cur-rent one and a required unit is available, the nodecan be re-scheduled. Otherwise, it remains at thesame position. As a result, the new schedule tablecan either be shorter or have the same length.Consider now the PDG shown in Figure 10. Inthis example, there are 5 addition-instructions and1 multiplication-instruction. Assume that the tar-get architecture is similar to the one presentedin the introduction section (i.e., one adder andone multiplier with one-bu�er internal forward-ing). After obtaining the initial schedule, shownin Figure 10(b), the algorithm attempts to re-duce the schedule length by calling the functionPipe rotate which brings A from the next itera-tion, called A1, and re-schedule it to cs5 (whichis cs4 after re-numbering the table) of the addi-tion unit. By doing so, the forward bu�er of A,which was granted to B in the initial schedule, isfree since this new A1 does not produce any datafor B. Then, the static schedule length becomes 9

control steps. After running SHARP for 4 itera-tions, the schedule length is reduced to six controlsteps as illustrated in Figure 10(c).4. Experimental ResultsWe have used SHARP in experiment on sev-eral benchmarks with di�erent hardware assump-tions: no forwarding, one bu�er-internal for-warding, su�cient bu�er-internal forwarding (in-frw.), one bu�er-external forwarding, two bu�er-external forwarding and su�cient bu�er-externalforwarding (ex-frw.). The target architecture iscomprised of a 5-stage adder and a 6-stage multi-plier pipeline units. When the forwarding featureexists, the data produced at the end of the EX-stage can be forwarded to the next execution cycleof EX-stage as shown in Figure 11(a).Note that the su�cient-xx forwarding assump-tion conveys that its architecture has su�cientnumber of forwarding bu�ers. Furthermore, theinternal and external modi�ers for each assump-tion convey that the forwarding technique can bedone within one functional unit and between twofunctional units respectively. The set of bench-mark problems and their characteristics are shownin Figure 11(b) Tables 1 and 2 exhibits the sim-ulation results from a system that contains oneadder/one multiplier and 2 adders/2 multipliersrespectively. Note that the results presented inthese tables were collected after running SHARPagainst each benchmark until there is no improve-ments for 7 consecutive intermediate schedules(i.e., seven iterations of the algorithm). Both
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IF ID EX M WR

IF ID EX WRMEX

IF ID EX M WR

IF ID EX WRMEX

Adder

Multiplier (a)
Benchmark Mul Add Sum1. 5-th Order Elliptic Filter 8 26 342. Di�erential Equation Solver 6 5 113. All-pole Lattice Filter 11 4 154. WDF for Transmission Line Computation 4 8 125. Unfolded All-pole Lattice Filter (uf=7) 66 24 906. Unfolded Di�erential Equa. Solver (uf=5) 24 20 447. Unfolded 5-th Elliptic Filter (uf=2) 16 52 68(b)Fig. 11. (a) 5-stage adder with internal forwarding unit and 6-stage multiplier with internal forwarding unit (b) Charac-teristics of the benchmarkstables present an initial schedule length of eachbenchmark and the �nal length after applyingthe algorithm to the initial schedule (see columnint/aft). The reduction percentage of each bench-mark is presented in column %.From experiments, the performance of the onebu�er-internal forwarding scheme is very close tothe su�cient bu�er-internal forwarding one. Thisis because most of the selected benchmarks haveonly one or two outgoing edge(s) (fan-out degree)for each node. Increasing the number of inter-nal forwarding bu�ers may slightly increase per-formance. The performance of a system with onebu�er could be worse than the one with su�cientbu�ers for some applications with large fan-outdegrees. In this case, only one successive nodecan be scheduled earlier by consuming the datafrom an only bu�er and the rest of the successivenodes would cause the underlying data-dependenthazards, i.e., waiting for data being ready from itsparent at WR-stage. For a system with externalforwarding, data can be forwarded to any func-tional unit in the system. Therefore, the resultingschedule length is shorter than that of the systemwith internal forwarding capability.Selecting an appropriate number of bu�ers de-pends on the maximum fan-out degree and thepipeline depth. In some cases only one or twobu�ers are enough with additional bu�ers not pro-ducing a signi�cant improvement. As an example,consider column 4 of Table 1 which describes a sys-tem with external forwarding. Particularly for thewave digital �lter application (benchmark 4) usingonly one bu�er is the most appropriate since thealgorithm results in the maximum reduction, 33%,over the initial schedule length. Adding 2 or morebu�ers results in an 11% reduction. For the dif-

ferential equation solver application (benchmark2), selecting two bu�ers is a good choice since thealgorithm yields the maximum reduction.The number of available units is also anothersigni�cant criterion. Since most of the testedapplications require more than one addition andone multiplication, increasing the number of func-tional units can reduce the underlying completiontime. Doubling the number of adders and mul-tipliers makes the initial schedule length shorterthan that of the single functional unit version.According to the result presented in Table 1, forthe system with an external forwarding hardware,processing a large application, such as the un-folded elliptic �lter, the adder unit is occupied atalmost every control step. Adding more functionalunits is the only approach that would reduce theschedule length. Table 2 shows the experimen-tal results for the system with 2 multipliers and 2adders.According to the data from Table 2, eventhough we have added more functional units tothe target system the hazard reduction percentage(ranging from 2{80 %) still relies on the character-istic of the applications as well as the pipeline ar-chitectures. For example, without the forwardingfeature, in the lattice �lter application, hazardscan be reduced up to 45 percent in the 2-adderand 2-multiplier system. For the wave digital �l-ter (benchmark 4), the reduction is 80%.The experimental results from both tables showthat SHARP can reduce a large number of hazardsby considering all available hardware and overlap-ping pipeline instructions. Further, in each it-eration of SHARP, the algorithm only needs toreschedule a few number of nodes. Our algo-rithm can also help designers choose the appropri-ate hardware architecture, such as the number of



12 ??pipelines, pipeline depth, the number of forward-ing bu�ers and others, in order to obtain goodperformance when running applications subject totheir overhead hardware costs.5. ConclusionSince computation-intensive applications containa signi�cant number of data dependencies andfew or no control instructions, data hazards of-ten occur during the execution time which de-grades the system performance. Hence, reduc-ing the data hazards can dramatically improvethe total computation time of such applications.Our algorithm, SHARP, supports modern multi-ple pipelined architectures and applies the looppipelining technique to improve the system out-put. It takes the application characteristics inthe form of a pipeline data-
ow graph and targetsystem information (e.g., the number of pipelinesand depth, their associated types, and their for-warding bu�er mechanism) as inputs. SHARP re-duces data hazards by rearranging the executionsequence of the instructions and produces a sched-ule in accordance with the system constraints.Not only does SHARP serve as a scheduling op-timization tool, it can be a simulation tool for asystem designer as well.References1. L. Chao, A. LaPaugh, and E. Sha. Rotation Schedul-ing: A Loop Pipelining Algorithm. In Proceedingsof ACM/IEEE Design Automation Conference, pages566{572, June 1993.2. S. Davidson, D. Landskov, et al. Some Experimentsin Local Microcode Compaction for Horizontal Ma-chines. IEEE Transactions on Computers, c-30:460{477, July 1981.
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?? 13Table 1. Performance comparison for 1 adder and 1 multiplier systemBen. no-frw. 1 buf/in-frw. in-frw. 1 buf/ex-frw. 2 buf/ex-frw. ex-frw.int/ aft % int/ aft % int/aft % int/aft % int/aft % int/aft %1 58/56 2 43/42 2 43/42 2 29/28 3 29/28 3 29/28 32 20/17 15 18/15 17 18/15 17 14/13 7 14/12 14 12/ 11 83 50/29 42 43/24 44 42/24 42 24/14 42 15/12 20 15/12 204 25/ 8 68 24/8 67 22/8 64 12/ 8 33 9/8 11 9/8 115 191/ 150 21 164/145 12 164/145 12 89/83 7 70/67 4 70/67 46 76/63 13 54/30 44 53/28 47 31/24 23 28/24 14 27/24 117 115/ 111 4 84/80 5 84/80 5 57/52 9 54/52 4 54/52 4Table 2. Performance comparison for 2-adder and 2-multiplier systemBen. no-frw. 1 buf/in-frw. in-frw. 1 buf/ex-frw. 2 buf/ex-frw. ex-frw.int/ aft % int/ aft % int/aft % int/aft % int/aft % int/aft %1 57/56 2 39/38 3 37/36 3 18/17 5 18/17 5 18/17 52 19/18 5 16/15 6 16/15 6 12/11 8 9/8 11 9/8 113 49/27 45 40/23 43 40/23 43 24/11 54 12/9 25 12/9 254 23/5 78 23/4 83 21/4 81 11/6 46 6/4 33 6/4 335 180/158 12 155/136 12 155/136 12 76/69 9 47/44 6 47/44 66 73/67 8 49/42 14 49/41 16 23/16 30 19/13 32 18/13 277 114/112 2 77/74 3 75/73 3 39/37 5 32/31 3 31/30 3
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