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Abstract. Computation intensive DSP applications usually require parallel/pipelined processors in or-
der to meet specific timing requirements. Data hazards are a major obstacle against the high performance
of pipelined systems. This paper presents a novel efficient loop scheduling algorithm that reduces data
hazards for such DSP applications. This algorithm has been embedded in a tool, called SHARP, which
schedules a pipelined data flow graph to multiple pipelined units while hiding the underlying data haz-
ards and minimizing the execution time. This paper reports significant improvement for some well-known
benchmarks showing the efficiency of the scheduling algorithm and the flexibility of the simulation tool.

1. Introduction

In order to speedup current high performance
DSP systems, multiple pipelining is an important
strategy that should be explored. Nonetheless,
it is well-known that one of the major problems
in applying the pipelining technique is the de-
lay caused by dependencies between instructions,
called hazards. Control hazards are known as the
hazards that prevent the next instruction in the
instruction stream from being executed, such as
branch operations. Likewise, the hazards that en-
cumber the next instruction by data dependen-
cies are called data hazards. Most computation-
intensive scientific applications, such as image pro-
cessing, and digital signal processing, contain a
great number of data hazards and few or no control
hazards. In this paper, we present a tool, called

SHARP (Scheduling with Hazard Reduction for
multiple Pipeline architecture), which was devel-
oped to obtain a short schedule while minimiz-
ing the underlying data hazards by exploring loop
pipelining and different multiple pipeline architec-
tures.

Many computer vendors utilize a forwarding
technique to reduce the number of data hazards in
their architectures. This process is implemented
in hardware whereby a copy of the computed re-
sult is sent back to the input prefetch buffer of
the processor. However, the larger the number
of forwarding buffers, the higher the cost that
will be imposed on the hardware. Therefore,
there exists a trade-off between its implementa-
tion cost and the performance gain. Further-
more, many modern high speed computers, such
as MIPS R8000, IBM Power2 RS/6000 and oth-



ers, use multiple pipelined functional units (multi-
pipelined) or superscalar (super)pipelined archi-
tectures. Providing a tool that determines an ap-
propriate pipelined architecture for a given spe-
cific application, therefore, will be beneficial to
computer architects. By using such a tool, one can
find a suitable pipeline architecture that balances
the hardware and performance costs by varying
the system architecture (e.g., a number of pipeline
units, type of each unit, forwarding buffers, etc.).

Rearranging the execution sequence of tasks
that belong to the computational application can
reduce data hazards and improve the perfor-
mance. Dynamic scheduling algorithms such as
tomasulo and scoreboard are examples of imple-
menting the algorithms in hardware. They were
introduced to minimize the underlying data haz-
ards which can not be resolved by a compiler [16].
These techniques, however, increase the hardware
complexity and costs. Therefore, special consid-
eration should be given to static scheduling, es-
pecially for some computation-intensive applica-
tions. The fundamental performance measure-
ment of a static scheduling algorithm is the total
completion time in each iteration, also known as
the schedule length. A good algorithm must be
able to maximize parallelism between tasks and
minimize the total completion time. Many heuris-
tics have been proposed to deal with this prob-
lem, such as ASAP scheduling, ALAP schedul-
ing, critical path scheduling and list scheduling
algorithms [2,3]. The critical path, list schedul-
ing and graph decomposition heuristics have been
developed for scheduling acyclic data flow graphs
(DFGs) [7,14]. These methods, however, do not
consider the parallelism and pipelining across it-
erations. Some studies propose scheduling algo-
rithms to deal with cyclic graphs [5,15]. Never-
theless, these techniques do not address the issue
of scheduling on pipelined machines that exploit
the use of forwarding techniques.

Considerable research has been done in the
area of loop scheduling based on software pipelin-
ing—a fine-grain loop scheduling optimization
method [6,10,12]. This approach applies the un-
rolling technique which expands the target code
segment. The problem size, however, also in-
creases proportionally to the unrolling factor. It-
erative modulo scheduling is another framework

that has been implemented in some compilers [13].
Nonetheless, in order to find an optimized sched-
ule, this approach begins with an infeasible initial
schedule and has to reschedule every node in the
graph at each iteration.

The target DSP applications usually contain it-
erative or recursive code segments. Such segments
are represented in our new model, called a pipeline
data-flow graph (PDG). An example of a PDG is
shown in Figure 1(b). In this model, nodes repre-
sent tasks that will be issued to a certain type
of pipeline and edges represent data dependen-
cies between two nodes. A weight on each edge
refers to a minimum hazard cost or pipeline cost.
This cost represents a required number of clock
cycles that must occur in order to schedule suc-
cessive nodes. In this work, a proposed novel
pipeline scheduling algorithm, SHARP, takes a
PDG and some pipeline architecture specifica-
tions (e.g., pipeline depth, number of forwarding
buffers, type and number of pipeline units etc.)
as inputs. The algorithm then efficiently sched-
ules nodes from the PDG to the target system.

After the initial schedule is computed, by a
DAG scheduling algorithm such as list schedul-
ing, the algorithm implicitly uses retiming. Only
a small number of nodes are rescheduled in each
iteration of our algorithm. The new scheduling
position is obtained by considering data depen-
dencies and loop carried dependencies, i.e., using
loop pipelining strategy as a basis to reduce data
hazards while improving the total execution time
under the hardware constraints given by the user
specifications.

As an example, Figure 1(a) presents two
pipeline architectures each of which consists of five
stages: instruction fetch (IF), instruction decode
(ID), execution (EX), memory access (M) and
write-back (WR). For simplicity, assume that each
of these stages takes one clock cycle to finish [4].
The pipeline hazard in this case is 3, since with
this architecture, any instruction will put data
available to read in the first half of the 5th stage
(WR) and read it in the 2nd stage (ID). In Sec-
tion 2, we will explain how to calculate this cost
in more detail. The PDG and its corresponding
code segment to be executed in this two-pipeline
system are shown in Figures 1(b) and (c) respec-
tively. Notice that each node of the graph also
indicates the type of instruction required to be ex-
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ecuted. Assume that the WR and ID stages of two
dependent instructions can be overlapped. For ex-
ample, instruction B can start reading (at the ID
stage) data produced by instruction A at the WR
stage. A legal execution pattern of the pipeline
for this example is illustrated in Figure 2(a).
Since all the pipeline stages of issued instruc-
tions are consecutive, only the beginning of each
instruction pipeline is required to be shown. Fig-
ure 2(b) illustrates a schedule table resulting from
Figure 2(b).
of the sample code segment (the complete table
comprises of M — 3 identical copies of this table).
Such a schedule becomes an initial schedule which
can be optimized by SHARP. Figure 3(a) and 3(b)
show the resulting intermediate PDG and sched-
ule after applying SHARP to the initial sched-
Nodes A and E from the next iteration are

This table only shows one iteration

ule.
rescheduled to current iteration of the schedule.
This is equivalent to retiming these nodes in the

(b)
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FOR i= 4 TO M DO
(A) Ali] = DI[i-2] + 2
(E) E[i] = D[i-2] * 2
(B) BIi] = A[i] + 3
(C) CIi] = Alil + EIi]
(D) D[i] = B[i] * C[i]
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(a) Target pipeline architecture (b) Pipeline DFG (c) Corresponding code segment
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(a) Pipeline execution pattern (b) An equivalent schedule

PDG (see Figure 3(a)). This technique explores
the parallelism across iterations (loop pipelining).
SHARP repeatedly applies such a method to each
intermediate schedule. Figures 3(c) and 3(d) show
the third intermediate retimed PDG and its sched-
ule respectively. At the third iteration we obtain
the optimized schedule with length 6 (a 25% im-
provement over the initial schedule).

Using our tool, we obtain not only the reduced
schedule length but we can also evaluate other ar-
chitecture options, such as introducing forwarding
hardware in the architecture or even additional
pipelines. In order to present our algorithm, the
remainder of this work is organized as follows:
Section 2 introduces some fundamental concepts.
The main idea and theorems behind the algorithm
used in SHARP are presented in Section 3.
Section 4, we discuss the experimental results ob-
tained by applying different pipeline architectures
to this tool. Finally, Section 5 draws conclusions
of this work.

In
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Fig. 3. (a)-(b) PDG and schedule of intermediate step of the algorithm, (c)-(d) PDG and the schedule after third step

2. Background

A cyclic DFG, G = (V, E), is commonly used to
represent dependencies between instructions in an
iterative or a recursive loop. However, it does not
reflect the type of pipeline architecture to which
the code segment is subjected. Therefore, in or-
der to distinguish them, some common hardware
factors need to be considered.

The type of architecture may be characterized
by considering different types of pipelines in the
system. The number of stages in a pipeline, or
pipeline depth, is one configuration factor that is
necessary to be taken into account, since it af-
fects the overall pipeline speedup. The forwarding
hardware is also a factor because it can diminish
the data hazards. Furthermore, the system may
consist of a number of forwarding buffers, respon-
sible for how many times a pipeline is able to by-
pass a datum [9].

In this paper, we assume our algorithm guar-
antees that no delays occur during the execution
of one instruction. In other words, the number of
cycles from the execution of the first to the last
pipeline stage for one instruction is equal to the
pipeline depth. In a multi-pipelined machine, if
the execution of an instruction I, depends on the
data generated by instruction [;, and the starting
moment of I} and I, are ¢; and ¢, respectively, we
know that to —t1 > Sout — Sin+ 1, where Sg,¢ is the
index of the pipeline stage from which the data is
visible to the instruction I, and Sj, is the index of
pipeline stage that needs the result of I; in order
to execute Is. We call Syu — Sin + 1 the pipeline
cost of the edge connecting the two nodes, repre-
senting instructions I; and I>. Figure 4 illustrates

the concept of the pipeline cost. Such a cost can
be qualified in three possible situations depending
on the characteristics of the architecture:

case 1: The pipeline architecture does not have
a forwarding option. The pipeline cost is
similar to the data hazard, which may be
calculated from the difference between the
pipeline depth and the number of the over-
lapped pipeline stages. For example in Fig-
ure 4(a), this pipeline reads data at the end
of ID and the data is ready after WR. The
Sout stage is 7 and Sj, is 3. Hence, for this
case, the pipeline cost is 7— 341 = 5.
case 2: The pipeline architecture has an internal
forwarding, i.e., data can merely be bypassed
inside the same functional unit. The pipeline
cost from this case may be obtained in a simi-
lar way as above. For instance, the pipeline in

Figure 4(b) has the internal forwarding such

that the data will be available right after the

EX stage. Then, Sy, is stage 5 and Si, is

stage 3, so the pipeline cost is 5 —3+ 1 = 3.

In this case, the special forwarding hardware

is characterized into two sub-cases.

1. The forwarding hardware has a limited
number of feedback buffers. The pipeline
cost will be the value without forwarding
when all the forwarding buffers are uti-
lized.

2. The forwarding hardware has an unlim-
ited number of feedback buffers (bounded
by the pipeline depth). In this case, the
pipeline cost will always be the same.

case 3: The pipeline architecture has an ezternal
or cross forwarding hardware, such as it is
capable of passing data from one pipeline to
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Fig. 4. (a) Pipeline cost w/o forwarding hardware (b) Pipeline cost w/ forwarding capability

another pipeline. We calculate the pipeline
cost by the same way described above. Again,
limited number of buffers or unlimited number
of buffers are possible sub-cases.

2.1.  Graph Model

In order to model the configuration of each multi-
pipelined machine associated with the problem be-
ing scheduled, the pipeline data-flow graph is in-
troduced.

Definition 1. A pipeline data-flow graph
(PDG) G =(V,E,T,d,c) is an edge-weighted di-
rected graph, where V is the set of nodes, E €
V x V is the set of dependence edges, T is the
pipeline type associated with a node u € V, d
is the number of delays between two nodes, and
c(e) = (¢fo,Cno) is a function from E to the pos-
itive integers representing the pipeline cost, asso-
ciated with edge e € E, where ¢y, and ¢, are the
cost when considering with and without forward-
ing capability respectively.

Each node in a PDG represents an instruction,
and the type of pipeline in which the instruction
will be executed. An edge from node u to node
v, exhibited by the notation u — v, conveys that
the instruction v depends on the result from the
instruction w. The number of delays d(e) on any
edge e € E such that u precedes v, where u,v € V|
indicates a data dependence from node u to v,
such that the execution of node v at iteration j
relies on the data produced by node u at iteration

j — d(e). The tuple associated with each edge
in a PDG, u (er0,¢30) v, is architecture-dependent

where ¢, is the number of clock cycles required

when there exists a forwarding hardware, and ¢,
is the number of clock cycles needed when execut-
ing the two instructions v and v considering no
forwarding. If there is no forwarding hardware,
the value of ¢f, will be the same as cy,.

As an example, Figure 5(a) illustrates a sim-
ple PDG associated with two types of functional
units, adder and multiplier. Each of which is a
five-stage pipeline architecture with a forwarding
function. Therefore, the pipeline cost

¢fo = 1 and ¢no = 3. Nodes A,B,C, D, and
F' represent the addition instructions and node F
indicates the multiplication instruction. The bar
lineson D — A and F' — FE represent the number
of delays between the nodes, i.e., two delays on
D — A conveys that the execution of operation
D at some iteration j produces the data required
by A at iteration j + 2.

2.2.  Initial Scheduling in SHARP

In this subsection, we introduce some important
considerations in acquiring a static pipeline sched-
ule from the PDG. Considerable research has
been conducted in seeking a scheduling solution
for a DFG [8]. In this research, we tailor the list
scheduling heuristic so that it agrees with condi-
tions of the PDG.

A static schedule consists of multiple entries in a
table. Each row entry indicates one clock cycle
the synchronization time interval, also called con-
trol step. Each column entry represents one of the
pipeline units in the multi-pipelined system where
nodes that have the same corresponding types of
pipeline will be assigned. The first pipeline stage
of each scheduled node starts executing whenever
the node appears in the table.
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Fig. 5. (a) Ezample when cf, = 1 and cno = 3 (b) Corresponding initial schedule (c)-(d) PDG with inter-iteration

dependency between node A and B

In order to obtain a static schedule from a PDG
feedback edges (i.e., edges that contain delays)
are temporarily ignored in this initial scheduling
phase. For instance, D — A and F' — FE in Fig-
ure 5(a) are temporarily ignored. Our scheduling
guarantees the resulting initial schedule is legal by
satisfying the following properties. Further, the
following scheduling properties must be preserved
by any scheduling algorithm.

Property 1. Scheduling properties for intra-
iteration dependencies

1. For any node n preceded by nodes m; by edges

e; such that d(e;) = 0 and m; (Cﬁi;a“
If cs(my) is the control step to which m; was
scheduled and b; is the number of available
buffers for the functional unit required by m;,
then node n can be scheduled at any control
step (cs) that satisfies the following rules.

cs > max{cs(m;) + cost(b;)}

where{ cost(b;) = cpo if by > 0

cost(b;) = cno otherwise

2. If there is mo direct-dependent edge between
nodes q andr, i.e. d(e) # 0, and q is scheduled
to control step k, node r may be placed at any
unoccupied control step which does not conflict
with any other data dependency constraints.

Note that if the architecture does not use forward-
ing hardware, then we set c¢f, = cn, and b; = 0.
As an example, Figure 5(b) presents the resulting

schedule table when we schedule the graph shown
in Figure 5(a) to a multiple pipelined system con-
sisting of one adder and one multiplier with one
internal buffer for each unit.

The last step of initial scheduling is to check
the inter-iteration dependency which is implicitly
represented by the feedback edges of the PDG.
A certain amount of empty control steps has to
be preserved at the end of the schedule table if
the number of control steps between two inter-
dependent nodes belonging to different iterations
is not sufficient to satisfy the required pipeline
cost of the two corresponding instructions. Fig-
ures 5(c) and (d) illustrates this situation. As-
sume that the pipeline depth of the adder is 5. If
we did not consider the feedback edge, the sched-
ule length would be only 4. However, the schedule
length actually has to be 6 since node A in the
next iteration, represented by A, cannot be as-
signed to the control step right after node By due
to the inter-iteration dependency between nodes
A and B. Hence two empty control steps need to
be inserted at the end of this initial schedule and
the final schedule length becomes six rather than
four.

Note again that the execution of all pipeline
stages, except for the first one, of any scheduled
node are hidden in an initial schedule table. Those
stages are overlapped and only the first stage of
each node is displayed, e.g., see Figure 2(a). After
applying a list scheduling algorithm that enforces
Property 1 to the example in Figure 1, the initial
schedule of Figure 2(b) is produced. The static
schedule length for that case is 8.



3. Reducing Schedule Length

In the previous section, we discussed the schedul-
ing conditions for assigning nodes from a PDG to
a schedule table. These conditions are also applied
to the optimization process of our algorithm. Our
algorithm is able to reduce the underlying static
schedule length of an initial schedule previously
obtained. It explores the parallelism across iter-
ations by implicitly employing the retiming tech-
nique [11]. The following section briefly reviews
the retiming and rotation techniques.

3.1. Retiming and Rotation

The retiming technique is a commonly used tool
for optimizing synchronous systems. A retim-
ing r is a function from V to Z. The value of
this function, when applied to a node v, is the
number of delays taken from all incoming edges
of v and moved to its outgoing edges. An ille-
gal retiming function occurs when one of the re-
timed edge delays becomes negative. This situ-
ation implies a reference to a non-available data
from a future iteration. Therefore, if we consider
G, = (V,E,T,d;,c) to be a PDG @ retimed by
a function r, a retiming is legal if the retimed de-
lay count d, is nonnegative for every edge in E.
For an edge v — v, the number of additional de-
lays is equal to the number of delays moved to the
edge through node u, subtracted by the number
of delays drawn out from the edge through node
v. The retiming technique can be summarized by
the following properties:

Property 2. Let G, = (V,E,T,ds,c) be a
PDG G = (V,E,T,d,c) retimed by r.

1. r is a legal retiming if de(e) > 0 for every
ec E.

2. For any edge u = v, we have d.(e) = d(e) +
r(u) —r(v).

3. For any path u % v, we have d.(p) = d(p) +
r(u) —r(v).

4. For a loop 1, we have d.(l) = d(I).

Property 2 demonstrates how the retiming
method operates on a PDG. An example of retim-

77? 7

ing is shown in Figure 6. The retiming r(A) =1
conveys that one delay is drawn from the incoming
edge of node A and pushed to all of its outgoing
edges, A - B and A — C.

After a graph has been retimed, a prologue is the
set of instructions that must be executed to pro-
vide the necessary data for the iterative process.
In our example, the instruction A becomes the
prologue. An epilogue is the other extreme, where
a complementary set of instructions will need to
be executed to complete the process. The time
required to run the prologue and epilogue is as-
sumed to be negligible when compared to the total
computation time of the problem.

Chao, LaPaugh and Sha proposed a flexible al-
gorithm, called rotation scheduling, to deal with
scheduling a DFG under resource constraints [1].
Like its name, this algorithm analogously moves
nodes from the top of a schedule table to its bot-
tom. The algorithm essentially shifts the itera-
tion boundary of the static schedule down, so that
nodes from the next iteration can be explored. We
now introduce some necessary terminology and
concepts used in this paper.

Definition 2. Given a PDG G =(V,E,T,d,c)
and R C V, the rotation of R moves one delay
from every incoming edge to all outgoing edges of
nodes in R. The PDG now is transformed into a
new graph (Gg).

For a schedule table with length L, this defini-
tion is applicable when moving the first row of the
schedule table to the position L + 1. Therefore,
this operation implicitly retimes the graph. The
benefit of doing the rotation is that a few num-
ber of nodes are rescheduled. Therefore only a
small part of an input graph is modified instead of
rescheduling the whole graph. Rotation schedul-
ing must preserve the following property:

Property 3. Let G =(V,E,T,d,c) be a PDG
and R C V. A set R can be legally retimed if and
only if every edge from V — R to R contains at
least one delay.

This property implies that the rotation opera-
tion always preserves Property 2. After perform-
ing the rotation strategy, the dependencies in a
new graph are changed, since some delays in the
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graph are now moved to new edges. This allows
us to explore the possibility of parallelizing those
nodes that do not have a direct-dependent edge
from their predecessors. Carefully re-scheduling
those rotated nodes to new positions, the sched-
ule length can be decreased.

Nevertheless, as mentioned earlier, we also have
to consider the inter-iteration dependency. Hence
a new schedule position assignment for a node has
to be carefully chosen to avoid conflicts in the
dependency constraint between iterations. Find-
ing a valid scheduling position now becomes more
complex since the problem now has incorporated
pipeline hazards. The major different from the
traditional algorithm is that our algorithm re-
quires checking not only dependencies of the new
graph after rotating a node but also pipeline haz-
ards which may occur only if schedule a node to
different processors. The following section dis-
cusses how to find such a dependency and avoiding
the underlying pipeline hazards in detail.

3.2.  Minimum Schedule Length

We know that a number of delays on any edge
u — v, where u,v € V| indicates in which itera-
tion, prior to the current iteration, node u legally
produces data for node v. This conveys that in
order to schedule the rotated nodes, the pipeline
cost constraints must also be satisfied, e.g., the
inter-iteration dependency between nodes u and
.

Definition 3. Given a PDG G = (V, E,T,d,c)
and nodes u,v € V where u - v € F, the min-
imum schedule length with respect to nodes u
and v, ML(u,v), is the minimum schedule length

3

required to comply with all data-dependent con-
straints.

The following theorem presents the ML func-
tion.

Theorem 1. Given a PDGG = (V,E,T,d,c),
an edge e =u — v € E, and d(e) = k for k > 0,
a legal schedule length for G must be greater than
or equal to ML(u,v), where

pipe_cost + cs(u) — cs(v)
k

ML(u,v) = [

with cs(node) being the starting control step of
that node and pipe_cost is either cn, or cs de-
pending on the architecture.

Proof: Let L be the schedule length for one
iteration. We know that the minimum number of
control steps between node u at iteration j and
node v at iteration j + k is the pipeline cost as-
sociated with u — v. There are k — 1 iterations
between iterations j and j + k. Since all iterations
have the same length L, the following equation is
the relationship of the distance between cs(u) and
es(v): Lx (k—1)+ (L — cs(u)) +es(v) + A >
pipe_cost where A represents a number of com-
pensated control steps fulfilling the pipeline cost
requirement. Hence, A can be expressed as: A >
pipe_cost — L x (k—1) — L + cs(u) — ¢s(v). In or-
der to obtain a uniform schedule, A is distributed
over all k iterations preceding iteration ¢+ k. This
distribution results in a minimum value § = [%],
and the new static schedule length that satisfies
the constraints with respect to u is ML = § + L.
After substituting, we obtain

ML(u,v) = V”’e-c"st + ZS(“) - CS(UW



Algorithm: SHARP

Output: shortest schedule table S
S := Initial-Schedule(G), Q := S;
for i :=1 to |V|

(G, S) :=Pipe_rotate(G);
if length(S) < length(Q)
then Q := S;

X NS wN =

77? 9

Input: G = (V,E,T,d,c), # forwarding buffers, and # pipelines

Fig. 7. SHARP framework

Procedure: Pipe_rotate
Input: PDG, input schedule
Output: Resulting schedule
N := Deallocate(S);
r := Retime(G, N);
S := Re-schedule(G, S, N);
return(G,, S);

NSO W N

/* extract nodes from the table */

/* retime nodes in N */

Fig. 8. Pipeline rotation scheduling routine

Procedure: Re-schedule

Output: Resulting schedule
foreach v € N do

CSmax = length(S);
CS§ 1= CSmin;

while (¢s < ¢$max) do

© ® NSO W

_ = =
N = O

if ¢s > cSmax then

do nothing

—
w

else

—
b

CSmin = max{parent(v).cs + cost(parent(v).b;)};

Input: PDG (G), set or rotated nodes (N), input schedule (S)

/* get schedule length */

increment cs and processor number pid until finding
the first “legal” processor available between cs and csmax

schedule node v to the resulting c¢s and pid obtained above

Fig. 9. Routine for re-mapping nodes to a schedule

O

Since a node may have more than one prede-
cessor, in order to have a legal schedule length,
one must consider the maximum value of ML. In
other words, the longest schedule length that is
produced by computing this function will be the

worst case that can satisfy all predecessors.

3.8.  Algorithm

The scheduling algorithm used in SHARP ap-
plies the ML function to check if a node can legally
be scheduled at a specific position. Therefore, it
may happen that the obtained schedule will re-
quire some empty slots to be added to compensate
for the inter-iteration dependency situation. We
summarize this algorithm in Figures 7 9 where
Figures 8 and 9 show how we implement the two
important optimization functions Pipe_rotate and
Re-schedule in SHARP. Note again that the ini-
tial schedule in the algorithm can be obtained by
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Fig. 10. (a) The 6-node PDG (b) the first optimized schedule table and (c) the final schedule

any DAG scheduling algorithm, e.g., a modified
list scheduling that satisfies Property 1. Next, the
procedure Pipe_rotate is applied to shorten the
initial schedule table. It first deallocates nodes
from the schedule table. These nodes are then
retimed and consequently rescheduled. The pro-
cedure Re-schedule finds a proper position such
that the schedule length will not exceed the pre-
vious length. A scheduling position has to satisfy
Property 1 and Theorem 1. This process is com-
puted in the while loop (Lines 8-10) which cal-
culates an appropriate control step considering a
pipeline cost and buffer size as well as ML. Then,
if the obtained control step is smaller than the cur-
rent one and a required unit is available, the node
can be re-scheduled. Otherwise, it remains at the
same position. As a result, the new schedule table
can either be shorter or have the same length.
Consider now the PDG shown in Figure 10. In
this example, there are 5 addition-instructions and
1 multiplication-instruction. Assume that the tar-
get architecture is similar to the one presented
in the introduction section (i.e., one adder and
one multiplier with one-buffer internal forward-
ing). After obtaining the initial schedule, shown
in Figure 10(b), the algorithm attempts to re-
duce the schedule length by calling the function
Pipe_rotate which brings A from the next itera-
tion, called A;, and re-schedule it to ¢s5 (which
is ¢s4 after re-numbering the table) of the addi-
tion unit. By doing so, the forward buffer of A,
which was granted to B in the initial schedule, is
free since this new A; does not produce any data
for B. Then, the static schedule length becomes 9

control steps. After running SHARP for 4 itera-
tions, the schedule length is reduced to six control
steps as illustrated in Figure 10(c).

4. Experimental Results

We have used SHARP in experiment on sev-
eral benchmarks with different hardware assump-
tions: no forwarding, one buffer-internal for-
warding, sufficient buffer-internal forwarding (in-
frw.), one buffer-external forwarding, two buffer-
external forwarding and sufficient buffer-external
forwarding (ex-frw.). The target architecture is
comprised of a 5-stage adder and a 6-stage multi-
plier pipeline units. When the forwarding feature
exists, the data produced at the end of the EX-
stage can be forwarded to the next execution cycle
of EX-stage as shown in Figure 11(a).

Note that the sufficient-xx forwarding assump-
tion conveys that its architecture has sufficient
number of forwarding buffers. Furthermore, the
internal and external modifiers for each assump-
tion convey that the forwarding technique can be
done within one functional unit and between two
functional units respectively. The set of bench-
mark problems and their characteristics are shown
in Figure 11(b) Tables 1 and 2 exhibits the sim-
ulation results from a system that contains one
adder/one multiplier and 2 adders/2 multipliers
respectively. Note that the results presented in
these tables were collected after running SHARP
against each benchmark until there is no improve-
ments for 7 consecutive intermediate schedules
(i.e., seven iterations of the algorithm). Both
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Fig. 11. (a) 5-stage adder with internal forwarding unit and 6-stage multiplier with internal forwarding unit (b) Charac-

teristics of the benchmarks

tables present an initial schedule length of each
benchmark and the final length after applying
the algorithm to the initial schedule (see column
int/aft). The reduction percentage of each bench-
mark is presented in column %.

From experiments, the performance of the one
buffer-internal forwarding scheme is very close to
the sufficient buffer-internal forwarding one. This
is because most of the selected benchmarks have
only one or two outgoing edge(s) (fan-out degree)
for each node. Increasing the number of inter-
nal forwarding buffers may slightly increase per-
formance. The performance of a system with one
buffer could be worse than the one with sufficient
buffers for some applications with large fan-out
degrees. In this case, only one successive node
can be scheduled earlier by consuming the data
from an only buffer and the rest of the successive
nodes would cause the underlying data-dependent
hazards, i.e., waiting for data being ready from its
parent at WR-stage. For a system with external
forwarding, data can be forwarded to any func-
tional unit in the system. Therefore, the resulting
schedule length is shorter than that of the system
with internal forwarding capability.

Selecting an appropriate number of buffers de-
pends on the maximum fan-out degree and the
pipeline depth. In some cases only one or two
buffers are enough with additional buffers not pro-
ducing a significant improvement. As an example,
consider column 4 of Table 1 which describes a sys-
tem with external forwarding. Particularly for the
wave digital filter application (benchmark 4) using
only one buffer is the most appropriate since the
algorithm results in the maximum reduction, 33%,
over the initial schedule length. Adding 2 or more
buffers results in an 11% reduction. For the dif-

ferential equation solver application (benchmark
2), selecting two buffers is a good choice since the
algorithm yields the maximum reduction.

The number of available units is also another
significant criterion. Since most of the tested
applications require more than one addition and
one multiplication, increasing the number of func-
tional units can reduce the underlying completion
time. Doubling the number of adders and mul-
tipliers makes the initial schedule length shorter
than that of the single functional unit version.
According to the result presented in Table 1, for
the system with an external forwarding hardware,
processing a large application, such as the un-
folded elliptic filter, the adder unit is occupied at
almost every control step. Adding more functional
units is the only approach that would reduce the
schedule length. Table 2 shows the experimen-
tal results for the system with 2 multipliers and 2
adders.

According to the data from Table 2, even
though we have added more functional units to
the target system the hazard reduction percentage
(ranging from 2 80 %) still relies on the character-
istic of the applications as well as the pipeline ar-
chitectures. For example, without the forwarding
feature, in the lattice filter application, hazards
can be reduced up to 45 percent in the 2-adder
and 2-multiplier system. For the wave digital fil-
ter (benchmark 4), the reduction is 80%.

The experimental results from both tables show
that SHARP can reduce a large number of hazards
by considering all available hardware and overlap-
ping pipeline instructions. Further, in each it-
eration of SHARP, the algorithm only needs to
reschedule a few number of nodes. Our algo-
rithm can also help designers choose the appropri-
ate hardware architecture, such as the number of
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pipelines, pipeline depth, the number of forward-
ing buffers and others, in order to obtain good
performance when running applications subject to
their overhead hardware costs.

5. Conclusion

Since computation-intensive applications contain
a significant number of data dependencies and
few or no control instructions, data hazards of-
ten occur during the execution time which de-
grades the system performance. Hence, reduc-
ing the data hazards can dramatically improve
the total computation time of such applications.
Our algorithm, SHARP, supports modern multi-
ple pipelined architectures and applies the loop
pipelining technique to improve the system out-
put. It takes the application characteristics in
the form of a pipeline data-flow graph and target
system information (e.g., the number of pipelines
and depth, their associated types, and their for-
warding buffer mechanism) as inputs. SHARP re-
duces data hazards by rearranging the execution
sequence of the instructions and produces a sched-
ule in accordance with the system constraints.
Not only does SHARP serve as a scheduling op-
timization tool, it can be a simulation tool for a
system designer as well.
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Table 1. Performance comparison for 1 adder and 1 multiplier system
Ben. no-frw. 1 buf/in-frw. in-frw. 1 buf/ex-frw. [2 buf/ex-frw. ex-frw

int/ aft T int/ aft T int /aft T int /aft T int /aft T int /aft T
1 58/56 2 13742 2 13/42 2 | 29/28 | 3 | 29/28 | 3 | 29/28 | 3
2 20/17 15 | 18/15 | 17 | 18/15 | 17 | 14713 | 7 | 14/12 | 14 | 12/ 11 | 8
3 50/29 42 | 43/24 | 44 | 42/24 | 42 | 24/14 | 42 | 15/12 | 20 | 15/12 | 20
4 25/ 8 68 24/8 67 22/8 64 | 12/8 | 33 9/8 11 9/8 11
5 191/ 150 21 164/145 12 164/145 12 89/83 7 70/67 4 70/67 4
6 76/63 13 | 54/30 | 44 | 53/28 | 47 | 31/24 | 23 | 28/24 | 14 | 27/24 | 11
7 115/ 111 | 4 84/80 5 84/80 5 | 57/52 | 9 | 54752 | 4 | s4/52 | 4

Table 2. Performance comparison for 2-adder and 2-multiplier system
Ben. no-frw. 1 buf/in-frw. in-frw. 1 buf/ex-frw. [2 buf/ex-frw. ex-frw.

int/ aft T int/ aft T int /aft T int /aft T int /aft T int /aft T
i 57/56 2 39/38 3 37/36 3 | 18/17 | 5 | 18/i7 | 5 | 18/17 | 5
2 19/18 5 16/15 6 16/15 6 | 12/11 | 8 9/8 11 9/8 11
3 49/27 | 45 | 40/23 | 43 | 40/23 | 43 | 24/11 | 54 | 12/9 | 25 | 12/9 | 25
4 23/5 78 23/4 83 21/4 81 11/6 46 6/4 33 6/4 33
5 180/158 12 155/136 12 155/136 12 76/69 9 47/44 6 47/44 6
6 73/67 8 49/42 | 14 | 49/41 | 16 | 23/16 | 30 | 19/13 | 32 | 18/13 | 27
7 114/112 | 2 77/74 3 75/73 3 | 39/37 | 5 | 32731 | 3 | 31/30 | 3
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