CS704 - Advanced Computer Architecture-II

Solution to Assignment 2

Instructions to Solve Assignments

The purpose of assignments is to give you hands on practice. It is expected that students
will solve the assignments themselves. Following rules will apply during the evaluation of
assignment.

e C(Cheating from any source will result in zero marks in the assignment.

e Any student found cheating in any two of the assignments submitted will be awarded
"F" grade in the course.

e No assignment after due date will be accepted.

Question 1: Total Points (10+5+5=20)

Following code lines are written in a high level language:

a=c+d;
b=c+e;

The corresponding instructions for MIPS are:

LW R1, 0(RO)
LW R2, 4(R0)

ADD R3, R1, R2

SW R3, 12(R0)
LW R4, 8(R0)

ADD R5,R1, R4

SW R5, 16(R0)

These instructions are to be executed on a pipelined processor with forwarding.

(a) Identify hazards by showing the execution of these instructions per cycle bases.

Instruction 1 |2 3 4 5 6 7 8 9 10 11 12 13
LW R1, 0(RO) IF |ID | EX | MEM | WB
LW R2, 4(R0) I[F |ID | EX MEM | WB
ADD R3,R1,R2 I[F | ID stall | EX MEM | WB
SWR3, 12(R0) [F stall | ID EX MEM | WB
LW R4, 8(RO0) stall | IF ID EX MEM | WB
ADD R5, R1, R4 [F ID stall | EX MEM | WB
SWR5, 16(R0) [F stall | ID EX MEM | WB
(b) Reorder these instructions to avoid any pipeline stalls.
LW R1, 0(RO)
LW R2, 4(R0)
LW R4, 8(RO)
ADD R3, R1, R2
SW R3, 12(R0)
ADD R5,R1, R4
SW R5, 16(R0)
(c) How many cycles are saved after executing the reordered instructions?
Instruction 1 |2 3 4 5 6 7 8 9 10 11
LW R1, 0(RO) IF |ID | EX | MEM | WB
LW R2, 4(R0) I[F |ID | EX MEM | WB
LW R4, 8(R0) I[F | ID EX MEM | WB
ADD R3,R1, R2 [F ID EX MEM | WB
SWR3,12(R0) [F ID EX MEM | WB
ADD R5, R1, R4 [F ID EX MEM | WB
SWRS5, 16(R0) [F ID EX MEM | WB

2 cycles are saved.

Question 2: Total Points (10+10+10=30)

Scheduling branch delay slots (see the three ways in Figure 2.1) can improve
performance. Assume a single branch delay slot and an instruction pipeline that
determines branch outcome in the second stage.

(a) For a delayed branch instruction, what is the penalty for each branch delay slot

scheduling scheme if the branch is taken and if it is not taken, and what
condition, if any, must be satisfied to ensure correct execution?

(b) A cancel-if-not-taken branch instruction (also called branch likely and
implemented in MIPS) does not execute the instruction in the delay slot if the
branch is not taken. Thus, a compiler need not be as conservative when filling
the delay slot. For each branch delay slot scheduling scheme, what is the penalty
if the branch is taken and if it is not taken, and what condition, if any, must be
satisfied to ensure correct execution?

(c) Assume that an instruction set has a delayed branch and a cancel-if-not-taken
branch. When should a compiler use each branch instruction and from where
should the slot be filled?

(a) From before (b) From target (c) From fall-through
DADD R1, R2, R3 DADD R1,R2, R3
DSUB R4, R5, R6 =
if R2 = 0 then ————— if R1 =0 then
Delay slot DADD R1, R2, R3 Delay slot
if R1=0then — OR R7,R8, R9
- | Delay slot | DSUB R4, RS, R6 <—

becomes becomes
DSUE R4, RS, R6 DADD R1,R2, R3
-
iftR2 =0then ——— if B1 =0 then
DADD R1, R2, R3 ‘ DADD R1, R2, R3 | ORR7, R8, RS
if R1 = 0 then
* ‘ DSUB R4, R5, Ré | DSUB R4,R5, R6 =—

Figure 2.1 Scheduling the branch delay slot. The top box in each pair shows the code before
scheduling; the bottom box shows the scheduled code. In (a) the delay slot is scheduled with an
independent instruction from before the branch. This is the best choice. Strategies (b) and (c) are
used when (a) is not possible. In the code sequences for (b) and (c), the use of R1 in the branch
condition prevents the DADD instruction (whose destination is R1) from being moved after the
branch. In (b) the branch delay slot is scheduled from the target of the branch; usually the target

instruction will need to be copied because it can be reached by another path. Strategy (b) is preferred
when the branch is taken with high probability, such as a loop branch. Finally, the branch may be
scheduled from the not-taken fall-through as in (c). To make this optimization legal for (b) or (c), it
must be OK to execute the moved instruction when the branch goes in the unexpected direction. By
OK we mean that the work is wasted, but the program will still execute correctly. This is the case, for
example, in (c) if R7 were an unused temporary register when the branch goes in the unexpected
direction.

Solution:
(a) Delayed Branch—Penalties

From Before | From Fall-Through | From Target
Branch Taken 0 1 0
Branch Not Taken | 0 0 1

If the compiler takes an instruction from before the branch, it must be sure that
there are no dependencies between that instruction and the predicate of the branch.
If the compiler takes an instruction from fall-through, it must make sure that there
are no dependencies between that instruction and instructions from the target of
the branch. If it takes an instruction from target, the compiler must make sure that
there are no dependencies between that instruction and the instruction from fall-
through. Please note that these rules only apply to true dependencies. If an
instruction from the correct path overwrites the value produced from the
instruction in the branch delay slot, then essentially we are correcting the value
stored in that particular register. However, we would still have to pay the penalty.

(b) Cancel-If-Not-Taken—Penalties

From Before | From Fall-Through | From Target
Branch Taken 0 1 0
Branch Not Taken | 1 1 1

If the compiler takes an instruction from before the branch, it must be sure that
there are no dependencies between that instruction and the predicate of the branch.
However we have to be concerned that the instruction in the delay slot might be
cancelled. Therefore, the compiler has to account for this possibility. Since there
would be a penalty regardless of the branch being taken or not, the compiler
shouldn’t take an instruction from fall-through. Since the branch delay slot
instruction is canceled if not taken, the compiler does not have to worry about
dependencies when taking an instruction from target to fill the slot.

(c)

If the compiler seeks to fill the branch delay slot from before the branch, then the
delayed branch scheme is the best. This scheme will ensure the execution of the
branch delay slot instruction regardless of the branch’s outcome. If the compiler
seeks to fill the branch delay slot from fall-through, then the branch delayed scheme
is the best. As pointed out in part (b), there is a penalty using this scheme regardless
of the branch’s outcome.

If the compiler seeks to fill the branch delay slot from target, cancel-if-not-taken is
better since the compiler would not have to worry about ensuring correctness when
the branch is not taken.

Question 3: Total Points (10+10=20)

Tomasulo’s algorithm has a disadvantage: Only one result can complete per clock,
per CDB.

(a) Use the hardware configuration from Figure 3.1 and the FP latencies from Figure
3.2. Find a code sequence of no more than 10 instructions where Tomasulo’s
algorithm must stall due to CDB contention. Indicate where this occurs in your
sequence.

(b) Generalize you result from part (a) by describing the characteristic of any code
sequence that will eventually experience structural hazard stall given n CDBs.

From instrfc:tion unit

Insruction FP registers I
gqueus
Load-store
operations
¥ . . Operand
Address unit FIDatI?g-pot buses
Store buffers Operatons
_{ Load buffers
Y
Operation bus
2 Reservation ’:':':. 1
1 stations
yData yAddress y
Memory unit FP adders . FP multipliers .
v Common data bus (CDB)

Figure 3.1 The basic structure of a MIPS floating-point unit using Tomasulo’s
algorithm. Instructions are sent from the instruction unit into the instruction queue
from which they are issued in FIFO order. The reservation stations include the operation
and the actual operands, as well as information used for detecting and resolving hazards.
Load buffers have three functions: hold the components of the effective address until it
is computed, track outstanding loads that are waiting on the memory, and hold the
results of completed loads that are waiting for the CDB. Similarly, store buffers have
three functions: hold the components of the effective address until it is computed, hold
the destination memory addresses of outstanding stores that are waiting for the data
value to store, and hold the address and value to store until the memory unit is avail-
able. All results from either the FP units or the load unit are put on the CDB, which goes
to the FP register file as well as to the reservation stations and store buffers. The FP

adders implement addition and subtraction, and the FP multipliers do multiplication and

division.

Instruction producing result Instruction vsing result Latency in clock cyveles
FP multiply FP ALU op 6

FP add FP ALU op 4

FP multiply FP store 5

FP add FP store 3

[nteger operation Any 0

(including load)

Figure 3.2 Pipeline latencies where latency is number of cycles between producing
and consuming instruction.

Solution:

(a)

There are many code sequences that stall a Tomasulo-based CPU. Such code
sequences contain two or more instructions that attempt to write their results in the
same cycle. One such sequence is the following:

frob: DMUL
AND
OR
LD
(b)

The code characteristic is to have n + I instructions using distinct function units that
all complete in the same clock cycle. Because a machine with n CDBs cannot write
more than n results per clock cycle, one of the instructions must stall. To have n + 1
instructions complete simultaneously requires an appropriate set of execution
initiation times in the function units relative to function unit latency and probably
some operand sharing.

Question 4: Total Points (15)

Consider the following code
for (i=1; i<=100; i=i+1)
{
A[i+1] = AJ[i] + C[i]; /*¥S1*/
B[i+1] = BJi] + A[i+1]; J*S2%*/
}
Write an optimal assembly code for the loop. Is it safe to use loop un-rolling here?
Why or why not?

Solution:

Assuming that R1, R2 and R3 contain the starting addresses of arrays A, B and C
respectively, here is the code:

Loop: L.D FO, O(R1)
L.D F1, O(R3)
ADD.D F2, FO, F1
S.D F2, 8(R1)
L.D F3, 0(R2)
ADD.D F4, F3, F2
S.D F4, 8(R2)
DADDUI R1, R1, #8
DADDUI R2, R2, #8
DADDUI R3, R3, #8
BNE R1, R4, Loop

There are two dependences:

1. S1 uses a value computed by S1 in an earlier iteration, since iteration i
computes A[i+1], which is read in iteration i+1. The same is true of S2 for BJ[i]
and B[i+1].

2. S2 uses the value, A[i+1], computed by S1 in the same iteration.

The dependence of statement S1 on an earlier iteration of S1 is called loop-carried
dependence. This dependence forces successive iterations of this loop to execute in
series.

The second dependence above (S2 depending on S1) is within an iteration and is not
loop-carried. Thus, if this were the only dependence, multiple iterations of the loop
could execute in parallel, as long as each pair of statements in an iteration were kept
in order.

Question 5: Total Points (15)

Based on the paper "Instruction Issue Logic for High-Performance
Interruptable Pipelined Processors", explain how the Register Update Unit (RUU)
is used to resolve data dependencies and maintain precise interrupts.

Solution:
Research-paper based question.

