CS704 - Advanced Computer Architecture-II

Solution to Assignment 3

Instructions to Solve Assignments

The purpose of assignments is to give you hands on practice. It is expected that students
will solve the assignments themselves. Following rules will apply during the evaluation of
assignment.

e C(Cheating from any source will result in zero marks in the assignment.

e Any student found cheating in any two of the assignments submitted will be awarded
"F" grade in the course.

e No assignment after due date will be accepted.

Question 1: Total Points (10+10=20)

Consider the speculative processor discussed in lectures. Since the reorder buffer
contains a value field, you might think that the value field of the reservation stations
could be eliminated.

(a) Show an example where this is the case and an example where the value field of
the reservation stations is still needed. Use the speculative processor shown in
Figure 1.1. Show MIPS code for both examples. How many value fields are
needed in each reservation station?

(b) Find a modification to the rules for instruction commit that allows elimination of
the value fields in the reservation station. What are the negative side effects of
such a change?

Reorder buffer
From instruction wnit
) Reg # Data
nstruction 1
gueue -
FF registers
Loadisiors
operations _
{ Ciperand o
Fleating-point buses
operations !
Load buffers ¥ k
Operation bus

Stare

lAddress

2 Reservation [——1——

FF multipliers

Commaon data bus (COB)

FIGURE 1.1 The basic structure of a MIPS FP unit using Tomasulo’s algorithm and extended
to handle speculation.

Solution:

(a) The following example shows a segment of code where issued instructions read
their operand values directly from the ROB. This example assumes that the
divide executes immediately and that the divide takes significantly long to

perform than the other FP operations. The register values of F2, F3, F4, and Fé6
are present in the register file for immediate use by the instructions. While the
divide executes, the add and multiply issue. The multiply starts immediately
when the divide finishes since the add finishes before the divide.

DIV.D F1, F2, F3

ADD.D F5, F6, F4

MULT.D F9, F1, F5

If the add moves to before the divide (as shown in the code below), then the ROB
entry associated with the add retires before the divide finishes. The multiply,
already in the reservation station, would have to read the value of F5 from the
register file. This datapath does not exist in the reservation station architecture.
Unless the rules of commit change, reservation stations require value storage.
ADD.D F5, F6, F4

DIV.D F1, F2, F3

MULT.D F9, F1, F5

(b) In order to remove the value fields from the reservation stations, a rule must be
added to the commit phase. The ROB entry allocated to an instruction must not
be permitted to commit until all issued instructions that are data dependant on
that particular allocated space have start to execute. In the example above where
the add is first, the add instruction may not commit until the multiply starts to
execute. The ROB may start to fill with these lingering instructions. Once filled,
issue must stall.

Question 2: Total Points (5+5+5+5=20)

For this problem, assume that you have a processor with a cache connected to main
memory via a bus. A cache access takes 1 cycle. A successful cache access (a hit)
finishes within that cycle. On an unsuccessful access (a miss) additional work must
be performed to fetch a block from main memory over the bus. A bus transaction
consists of one cycle to send the address to memory, four cycles of idle time for
main-memory access, and then one cycle to transfer each word in the block to the
cache. (Assume that the processor continues execution only after the last word of
the block has arrived.) In other words, if the block size is B words (at 32 bits/word),
a cache miss will cost 1 + 4 + B cycles.

Following table gives the average cache miss rates of a 1 megabyte cache for various
block sizes.

Block size(B) Miss ratio(m) %
1 word 3.40%
4 words 1.00%

16 words 0.40%
64 words 0.25%
256 words 0.19%

(a) Write an expression for the average memory access time for a 1-MByte cache
and a B-word block size (in terms of m and B).

(b) What block size yields the best average memory access time?

(c) If bus contention adds three cycles to the main-memory access time, which block
size yields the best average memory access time?

(d) Ignoring bus contention, if the bus width is doubled to 64 bits, what is the
optimal block size?

Solution:

(a)

Average Memory Access Time =1 + m(1 + 4 + B) cycles

(b)

ForB==1 1+.0340(1+4+1) =1.204

For B == 1+.0100(1+4+4) =1.09

ForB==16 1+.0040(1+4+16) =1.084 block size of 16 is best

ForB==64 1+.0025(1+4+64) =1.1725
For B ==256 1+.0019(1+4+256) = 1.4959

)

ForB==1 1+.0340(3+1+4+1) =1.306

ForB==4 1+.0100(3+1+4+4) =1.12

ForB==16 1+.0040(3+1+4+16) =1.096 block size of 16 is best
ForB==64 1+.0025(3+1+4+64) =1.18

For B==256 1+.0019(3+1+4+256) =1.5016

(d)

For B == 1+.0340(1+4+1) =1.204

For B == 1+.0100(1+4+2) =1.07

ForB==16 1+.0040(1+4+8) =1.052 block size of 16 is best

ForB==64 1+.0025(1+4+32) =1.0925
For B==256 1+.0019(1+4+128) = 1.2527

Question 3: Total Points (10+5+10=25)

You have a computer with two levels of cache memory and the following
specifications:
e Processor: 2GHz, 64-bit RISC CPU
e On-chip L1 caches
0 splitinstruction & data cache, blocking, single-ported
0 write-through & non-write allocate
0 1 CPU cycle access time
0 Block ssize = 32 bytes
e Off-chip L2 cache off-chip
O unified single-ported cache, blocking
O write-back
0 10 CPU cycles access time (L1 miss penalty) for both reads and writes
0 Block size = 32 bytes
e Main memory:
O Bus: 64-bit data transfers at 400 MHz
0 Latency: 15+5+5+5 CPU cycles access time for 32 bytes (L2 miss
penalty - includes latency of both DRAM and memory bus)

(a) What is the:

e Peak L1 data cache bandwidth available to CPU (assuming 0% L1 misses)?
e Peak L2 cache bandwidth available to L1 cache (assuming 0% L2 misses)?
e Main memory bandwidth available to L2 cache?

[Calculate the bandwidths in Gbytes/sec, i.e. 230 bytes/sec.]

(b) You are given the following L1 cache statistics for a program executing on this
system

Metrics Access Type:

Total Instrn Data Loads Stores

Accesses 10000000 | 7362210 | 2637790 | 1870945 | 766845

Misses 52206 8466 43740 36764 6976
Words Read From Lower-levels 180920 (i.e. 45230 cache lines)
Words Written-back to Lower-levels 766845
Total Traffic 947765

How long does an average instruction take to execute (in ns), assuming 1 clock cycle
per instruction in the absence of memory hierarchy stalls, no write buffering at the

L1 cache level, and 0% L2 miss rate? Ignore register dependencies between
instructions.

(c) You are considering replacing the L2 cache with a victim cache. Given the
information provided to you, compute a measure of “speed” for each alternative
and indicate which is the faster solution. Justify the metric you choose to
compare the two alternatives and state your assumptions. Assume the
performance statistics are:

0 L2 cache local miss ratio= 0.18
0 Victim cache miss ratio = 0.23
0 Victim cache transport time from L1 miss = 2 CPU clock

Solution:

()

Peak L1 data cache bandwidth:
8 bytes / 1 CPU cycle access time = 8 bytes/0.5ns = 16 Gbytes/sec

Peak L2 cache bandwidth:
32 bytes / 10 CPU cycle access time = 32 bytes/5ns = 6.4 Gbytes/sec

Peak memory bandwidth:
32 bytes / 30 CPU cycle access time = 32 bytes/15ns = 2.13 Gbytes/sec

(b)

Any instruction that hits in the cache will not be penalized by the misses (Unless of
course there are data dependencies, but since the problem tells us to ignore this).
Thus, we just need to find average miss penalty of an instruction since that will
incur extra latency. Note, that since we have a 0% L2 miss rate, we never incur any
main memory accesses.
Average instruction latency =

latencyideal + extra latencystwans= 1 + instruction stall cycles + data stall cycles

Instruction stall cycles = ICache miss rate * L1 miss penalty

Data stall cycles = (load rate * load miss rate * L1 miss penalty) + (store rate * write
penalty)

The L1 miss penalty is 10 cycles. Since L1 is write-through, we assume the write
penalty is the same as the L1 miss penalty which is 10 cycles. Also, since the L2 is
single-ported, there may be the case where an instruction miss and a data miss
occurs at the same time and there will be a structural hazard. In that case, one of the
misses will incur an extra 10 cycle penalty. However the chance of this happening is

almost zero: ICache miss rate * DCache miss rate = 0.115%*1.66% ~= 0%.
Therefore we’ve neglected this in our equation.

The ICache miss rate is given in the table as: 8466/7362210 =0.115%
The load rate is given in the table as: 1870945/7362210 = 25.41%
The load miss rate is given in the table as: 36764/1870945 = 1.965%
The store rate is given in the table as: 766845/7362210 = 10.42%

Thus,

Instruction stall cycles = 0.115% * 10 = 0.0115 cycles

Data stall cycles = 25.41% * 1.965% * 10 + 10.42% * 10 = 1.09 cycles

Average instruction latency =1 + 0.0115 + 1.09 = 2.1015 cycles

So, average instruction time = Average latency * cycle time = 2.1015 * 0.5ns = 1.05ns

)

Given the information provided, it’s clear that the common case is a cache read. The
reads, i.e. instruction fetch and loads, account for (7362210+1870945)/10000000 =
92.3% of total L1 cache accesses. Also, the write miss rate is much lower than the
load miss rate. Thus, one metric that we can use for comparison then is Average
Memory Access Time (AMAT) of a read.

The L1 read miss rate = (instruction & load misses) / (instruction & load accesses)
= (8466 + 36764) / (7362210 + 1870945) = 0.4899%

1. L2 Cache,
AMAT2 =10 + L2 miss rate * 30 = 10 + 0.18*30 = 15.4 cycles
AMAT1 =1 + L1 read miss rate * AMATL2 = 1 + 0.004899*15.4 = 1.0754 cycles

2. Victim Cache,
AMATyc =2 + VC miss rate * 30 =2 + 0.23*30 = 8.9 cycles
AMATL1 =1 + L1 read miss rate * AMATi2 = 1 + 0.004899*8.9 = 1.0436 cycles

So, it would seem that the victim cache would be a better choice in this case.

Question 4: Total Points (10)

A large amount (more than a third) of DRAM power can be due to page activation
(see http://download.micron.com/pdf/technotes/ddr2 /TN4704.pdf and
http://www.micron.com/systemcalc). Assume you are building a system with 1 GB
of memory using either 4-bank 512 Mbit x 4 DDR2 DRAMSs or 8-bank 1 Gbit x 8
DRAMs, both with the same speed grade. Both use a page size of 1 KB. Assume
DRAMs that are not active are in precharged standby and dissipate negligible power.
Assume the time to transition from standby to active is not significant. Which type of
DRAM would be expected to result in lower power? Explain why.

Solution:

The power required to drive the output lines is the same in both cases, but the system
built with the x4 DRAMs would require activating banks on 18 DRAMs, versus only 9
DRAMs for the x8 parts. The page sizes activated on each x4 and x8 part are the same
and take roughly the same activation energy. Thus, since there are fewer DRAMs being
activated in the x8 design option, it would have lower power.

Question 5: Total Points (5+10=15)

Read the paper "Future Cache Design using STT MRAMs for Improved Energy
Efficiency: Devices, Circuits and Architecture” and answer the following
questions:

(a) What is STT MRAM and how is it different from SRAM?

(b) Evaluate STT MRAM and SRAM caches based on the following parameters:

= (Cache utilization
= Energy consumption

Solution:
Research-paper based question.

Question 6: Total Points (10)

Read the paper "Energy Reduction for STT-RAM Using Early Write
Termination” and elaborate how Early Write Termination (EWT) improves energy
efficiency of STT-RAM cache?

Solution:
Research-paper based question.

