CS704 — Advanced Computer Architecture-Ii

Solution to Assignment 1

Instructions to Solve Assignments

The purpose of assignments is to give you hands on practice. It is expected that students will
solve the assignments themselves. Following rules will apply during the evaluation of
assignment.

e Cheating from any source will result in zero marks in the assignment.

e Any student found cheating in any two of the assignments submitted will be awarded "F"
grade in the course.

e No assignment after due date will be accepted.

Question 1: Total Points (30)
Design a 16-bit ISA for processor containing the following components:

e 8 General Purpose Registers (GPR)

e ALU supporting ADD, SUB, INC, DEC, OR, XOR, AND, NAND, LSHFTR, LSHFTL, ASHFTR,
and ASHFTL

e Assume ALU contains saturation and overflow check logic so support ADD and SUB with
both options, i.e. overflow and saturate

e LOAD, STORE with two addressing modes Direct and Indirect

e Two control instructions Jump and Call

e NOP instruction

Design means a complete and detailed table containing bit information for every
instruction. All 16-bit information must be provided to get full credit.

Solution:

1. Abstract:

In this 16-bit Instruction Set Architecture Design, 9 bits are used for the addresses of
three operands including sourcel, source2 and destination, while rest of the 7 bits are
used as fixed numbers of bits for operation code.

15 0

‘ Opcode | Dest ‘ Scrl Scr2
7 3 3 3
Bit Usage:
Bits Usage

155 Addressing Mode Specification

14" and 13" Types of Instructions

12" and 11" Sub-Types of Instructions

10" and 9™ Operations

8™ till 0" Addresses of three Operands

2. Division of Op-Code:
The 7 bits Op-code is further divided ion to four parts each defined as follows,

2.1. Mode Indication:

As this design support two addressing modes i.e. register-register, direct and indirect
modes, and 15" bit is dedicated to represent the mode, for this purpose ‘0" indicated
the Direct mode while ‘1’ indicates the indirect mode of addressing.

15" bit
0 Direct Mode
1 In-direct Mode

2.2. Types of Instructions:
The required instructions are divided into four types and two bits 13" and 14™ are
dedicated to represent the type of instruction.

14" bit | 13" bit
0 0 NOP
0 1 Control Inst.
1 0 Load/store Inst.
1 1 ALU Inst.

2.3. Sub-Types of Instructions:

The above indicated four types of instructions are further classified in to sub-types and
the two bits 12" and 11™ are dedicated to indicate the sub-type of instructions while
the bits 10" and 9" are dedicated to indicate the particular operation. It must be noted
that NOP, Control and Load/store do not need the sub-types because of their simplicity
while ALU Operations are classified into subtypes using 12" and 11™" bits.

For NOP:
14t 13t 12t 11t 10t gth Inst.
0 0 0 0 0 0 NOP
For Control Instructions:
14t 13t 12t 11t 10 gth Inst.
0 1 0 0 0 0 Jump
0 1
0 1
0 1 1 1 1 1 Call
For Load/Store Instructions:
14t 13t 12t 11 10" gth Inst.
1 0 0 0 0 0 Load
1 0
1 0
1 0 1 1 1 1 Store

2.4. ALU Instructions:
These are also classified into subtypes ad follows using 12" and 11" bit and the
operations are then indicated using 10" and 9" bits.

14 13% 12 11" | Sub-Type
0 0 Arithmetic Operations
1 Shift Operations
1 1 1 0 Increment / Decrement
Operations
1 1 1 1 Logical Operations

a) Arithmetic Operations:

14t 13t 12t 11t 10" 9t

=y

Operations

ADD Saturate
ADD Overflow
Subt Saturate
Subt Overflow

== 0Ol O

[eliolieolNe)
oO|O|O|Oo
=|IOR O

1
1
1
1

N T TS

b) Shift Operations:

14" 13% 12" 11" 10" 9" | Operations
1 1 0 1 0 0 | LSHFTR
1 1 0 1 0 1 | LSHFTL
1 1 0 1 1 0 | ASHFTR
1 1 0 1 1 1 | ASHFTL

c) Increment/Decrement Operations:

14 13% 12t 11" 10™ 9" | Operations

1 1 1 0 0 0 Increment
1 1
1 1
1 1 1 0 1 1 Decrement

d) Logical Operations:

14 13% 12 11" 10™" 9" | Operations
1 1 1 1 0 0 | XOR
1 1 1 1 0 1 |OR
1 1 1 1 1 0 |AND
1 1 1 1 1 1 | NAND

3. Instruction Sheets:

Combining all the divisions and concepts discussed above, following is the complete
instruction sheet for the assigned 16-bit ISA.

Bit Usage:
Bits Usage
155 Addressing Mode Specification (Direct / Indirect)
14" and 13" Types of Instructions
12" and 11% Sub-Types of Instructions
10" and 9™ Operations
8" till 0™ Addresses of three Operands

a) Instruction Sheet (Direct Mode — 15" bit ‘0’):

15" [14™ | 13" | 12" 11" | 10" | 9" Instruction
0 0 0 0 0 0 0 NOP
Control Instructions
0 0 1 0 0 0 0 Jump
0 0 1 1 1 1 1 Call
Load/store Instructions
0 1 0 0 0 0 0 Load
0 1 0 1 1 1 1 Store
ALU — Arithmetic Instructions
0 1 1 0 0 0 0 ADD Saturate
0 1 1 0 0 0 1 ADD Overflow
0 1 1 0 0 1 0 Subt Saturate
0 1 1 0 0 1 1 Subt Overflow
ALU - Shift Instructions
0 1 1 0 1 0 0 LSHFTR
0 1 1 0 1 0 1 LSHFTL
0 1 1 0 1 1 0 ASHFTR
0 1 1 0 1 1 1 ASHFTL
ALU — Increment / Decrement Instructions
0 1 1 1 0 0 0 Increment
0 1 1 1 0 1 1 Decrement
ALU - Logical Instructions
0 1 1 1 1 0 0 XOR
0 1 1 1 1 0 1 OR
0 1 1 1 1 1 0 AND
0 1 1 1 1 1 1 NAND

b) Instruction Sheet (In-Direct Mode — 15" bit 1’):

15" [14™ | 13" | 12" | 11" | 10" | 9" Instruction
1 0 0 0 0 0 0 NOP
Control Instructions
1 0 1 0 0 0 0 Jump
1 0 1 1 1 1 1 Call
Load/store Instructions
1 1 0 0 0 0 0 Load
1 1 0 1 1 1 1 Store
ALU — Arithmetic Instructions
1 1 1 0 0 0 0 ADD Saturate
1 1 1 0 0 0 1 ADD Overflow
1 1 1 0 0 1 0 Subt Saturate
1 1 1 0 0 1 1 Subt Overflow
ALU - Shift Instructions
1 1 1 0 1 0 0 LSHFTR
1 1 1 0 1 0 1 LSHFTL
1 1 1 0 1 1 0 ASHFTR
1 1 1 0 1 1 1 ASHFTL
ALU — Increment / Decrement Instructions
1 1 1 1 0 0 0 Increment
1 1 1 1 0 1 1 Decrement
ALU — Logical Instructions
1 1 1 1 1 0 0 XOR
1 1 1 1 1 0 1 OR
1 1 1 1 1 1 0 AND
1 1 1 1 1 1 1 NAND

4. Addressing Implementations:

Following are few sample implementations with respective addressing modes,

OR (Direct Mode)

0 1 1 1 1 0 1 Destination Source 0 0 0

ADD Saturate (Direct Mode)

15th 14th 13th 12th 11th 1Oth 9th 8th |7th ‘6th 5th |4th ‘srd 2nd ‘ 1st |0th

0 1 1 0 0 0 0 Destination Source-1 Source-2

LOAD (In-Direct Mode)

1 1 0 0 0 0 0 Source Offset 0 0 0
STORE (In-Direct Mode)
15th 14th 13th 12th 11th 1Oth 9th 8th | 7th ‘ 6th 5th | 4th ‘ 3rd 2nd 1st 0th
1 1 0 1 1 1 1 Destination Offset 0 0 0
JUMP (Direct)
15th 14th 13th 12th 11th 1Oth 9th 8th | 7th ‘ 6th 5th 4th 3rd 2nd 1st Oth
0 0 1 0 0 0 0 Base 0 0 0 0 0 0

Question 2: Total Points (10)

In reg-mem architecture, clock cycle is 10 ns wide. It is proposed that reg-reg
architecture be used instead, that reduces the clock cycle by 2 ns. However, it requires
an additional load instruction, in some cases! Will the new processor be more efficient,
if so under what circumstances? Quantify your answer.

Solution:

Efficiency of reg-reg will depend upon the resulting increase in instruction count. If it is
below a certain threshold level, reg-reg architecture will be more efficient. Assume that
we have X instructions originally in reg-mem architecture. Execution time of this
architecture is given by (all calculations assume CPI=1)

Execution timegg = IC * CPl * CCT = x*1*10 = 10x ns

Now for proposed reg-reg architecture, we need additional load/store instructions. Let s
assume that increase in instruction count is y%. Then new execution time will be:

Execution timeneyw = IC * CP1 * CCT = (X + y% of x)*1*8

Overall speedup is given by Amdhal’s law:
Speedupoveran = Execution timegq / Execution timepey

If increase in instruction count (y%) is such that Execution timeoq = Execution timeyey ,
then value of y will reflect the limit below which new reg-reg architecture will be more
efficient than reg-mem architecture. A simple calculation illustrates this point. Assume
that increase in the instruction count is 25% i.e. y= 25 %, then both new and old
execution times will be equal. If the value of y is less than 25%, as usually in the case,
then new architecture will be more efficient. In fact, this is really the case because in
typical reg-reg architecture, load/store instruction are about 20 to 22%.

Question 3: Total Points (10)
A computer architect is designing a hardware datapath implementation and the
architect has determined following circuit element delays.

Instruction Memory 150 ps

Decode 70 ps
Register Fetch 60 ps
ALU 150 ps

Data Memory 200 ps
Register Write Back 60 ps

(a) What is the length of a clock cycle for a single cycle datapath implementation? (2)

(b) What would be the frequency of a processor, corresponding to single datapath
implementation? (3)

(c) What would be the length of fastest clock cycle for a 5-stage pipeline datapath? What
would be the corresponding processor frequency? (3)

(d) How much faster is the 5-stage pipelined datapath compared to the single cycle
datapath implementation? (2)

Solution:
(a) What is the length of a clock cycle for a single cycle datapath implementation?
The cycle-time has to allow an instruction to go through all the stages each cycle, so:

Clock Cycle Time = Instruction Memory + Decode + Register Fetch + ALU + Data Memory
+ Register Write Back

Clock Cycle Time = 150 + 70 + 60 + 150 + 200 + 60 = 690 ps
Length of Clock Cycle = 690 ps

(b) What would be the frequency of a processor, corresponding to single datapath
implementation?
Processor Frequency is the reciprocal of Clock Cycle Length, so:
1 1 1

Processor Frequency = = — = — =0.145x10" =1.45GHz
clock cycle length 690x10 6.9x10

(c) What would be the length of fastest clock cycle for a 5-stage pipeline datapath? What would
be the corresponding processor frequency?

Pipelining to 5 stages reduces the cycle time to the length of the longest stage which in

this case is data memory. So, the length of the clock cycle is 200 ps.

Processor Frequency is the reciprocal of Clock Cycle Length, so:
1 1 1

Processor Frequency = = = — =0.5x10" =5GHz
clock cycle length 200x10 2x10

(d) How much faster is the 5-stage pipelined datapath compared to the single cycle datapath
implementation?

The performance ratio can be calculated as:
CPU Clock Cycleg e cycre

CPU Clock Cycle
=690/200 = 3.45

pipelined

So, the 5-stage pipelined datapath is 3.45 times faster than single cycle datapath
implementation.

Question 4: Total Points (20)

For the following mathematical expressions write an assembly language code:
(a) For Reg-Reg architecture (10)
(b) For Reg-Mem architecture (10)

U=A+B+D
V=C+D
W=B<<3
X=7B+B+C+D
Y=X+V

Solution:
For simplicity, | am considering these expressions as independent.

(a) For Reg-Reg architecture

U=A+B+D

LW R1, O(RO) ;load A from memory to R1
LW R2, 4(R0) ;load B from memory to R2
ADD R3, R1, R2

LW R4, 8(R0) ;load D from memory to R4
ADD R5, R3, R4

SW R5, 12(R0) ;store R5 to memory
V=C+D

LW R1, O(RO) ;load C from memory to R1
LW R2, 4(R0) ;load D from memory to R2
ADD R3, R1, R2

SW R3, 8(R0) ;store R3 to memory
W=B<<3

LW R1, O(RO) ;load B from memory to R1

SLLR1, R1, 3
SW R1, 4(R0)

X=7B+B+C+D
LW R1, O(RO)
MULTIR2,R1, 7
ADD R3, R2,R1
LW R4, 4(RO)
ADD R5, R3, R4
LW R6, 8(R0)
ADD R7, R5, R6
SW R7, 12(R0)

Y=X+V

LW R1, O(RO)
LW R2, 4(RO)
ADD R3, R1,R2

SW R3, 8(R0)

;shift logical left 3 bits
;store R1 to memory

;load B from memory to R1
;multiply immediate with 7
;load C from memory to R4
;load D from memory to R6
;store R7 to memory

;load X from memory to R1
;load Y from memory to R2

;store R3 to memory

(b) For Reg-Mem architecture

U=A+B+D

LW R1, O(RO)
ADD R3, R1, 4(R2)
ADD R5, R3, 8(R0)
SW R5, 12(R0)

V=C+D

LW R1, O(RO)
ADD R3, R1, 4(RO)
SW R3, 8(R0)

W=B<<3

LW R1, O(RO)
SLLR1,R1,3
SW R1, 4(R0)

X=7B+B+C+D
LW R1, O(RO)
MULTIR2,R1, 7
ADD R3, R2, R1
ADD R5, R3, 4(R0)
ADD R7, R5, 8(R0)
SW R7, 12(R0)

;load A from memory to R1

;store R5 to memory

;load C from memory to R1

;store R3 to memory

;load B from memory to R1
;shift logical left 3 bits
;store R1 to memory

;load B from memory to R1
;multiply immediate with 7

;store R7 to memory

Y=X+V

LW R1, O(RO) ;load X from memory to R1
ADD R3, R1, 4(RO)
SW R3, 8(R0) ;store R3 to memory

Question 5: Total Points (20)

Identify data hazards from the below code and show the execution of the code on a
pipelined architecture on per cycle basis. You are required to highlight data hazard(s)
and technique used to avoid it.

Opcode | Target | Source 1 | Source 2
ADD R1 R2 R3

SUB R4 R1 R5

AND R6 R1 R7

OR R8 R1 R9

XOR R10 R1 R11

Solution:

All the instructions after the ADD use the result of the ADD instruction. As shown in
Figure 1.1, the ADD instruction writes the value of R1 in the WB pipe stage, but the SUB
instruction reads the value during its ID stage, which is called data hazard. Unless
precautions are taken to prevent it, the SUB instruction will read the wrong value and
try to use it. In fact, the value used by the SUB instruction is not even deterministic:
Though it is logical to assume that SUB would always use the value of R1 that was
assigned by an instruction prior to ADD, this is not always the case. If an interrupt should
occur between the ADD and SUB instructions, the WB stage of the ADD will complete,
and the value of R1 at that point will be the result of the ADD. This unpredictable
behavior is obviously unacceptable.

The AND instruction is also affected by this hazard. As shown in Figure 1.1, the write of
R1 does not complete until the end of clock cycle 5. Thus, the AND instruction that reads
the registers during clock cycle 4 will receive the wrong results.

The XOR instruction operates properly because its register read occurs in clock cycle 6,
after the register write.

The OR instruction also operates without incurring a hazard because we perform the
register file reads in the second half of the cycle and the writes in the first half.

Time (in clock cycles)

CCAH cc2 [CC4 CCB CCE

ADD R1,R2,R3 | M

SUB R4, R1, RS

AND RE, R1, R7

Program execution order (in instructions)

OR RE,R1, RO

XORR10, A1, R11

Figure 1.1 The use of the result of the DADD instruction in the next three instructions causes a hazard,
since the register is not written until after those instructions read it.

We can solve this problem by using a simple hardware technique called forwarding (also
called bypassing and sometimes short-circuiting) as shown in Figure 1.2 below. The key
insight in forwarding is that the result is not really needed by the SUB until after the
ADD actually produces it. If the result can be moved from the pipeline register where
the ADD stores it to where the SUB needs it, then the need for

a stall can be avoided.

With forwarding, if the SUB is stalled, the ADD will be completed and the bypass will not
be activated. This relationship is also true for the case of an interrupt between the two
instructions.

We need to forward results not only from the immediately previous instruction, but
possibly from an instruction that started 2 cycles earlier. Figure 1.2 shows the code
sequence with the bypass paths in place and highlighting the timing of the register read
and writes. This code sequence can be executed without stalls.

Time {in clock cycles)

CCA cca2 () cC4 CCh CCE

ADD R1, R2, A3 1M

SUB R4, R1, R&

Program execufion order {in instructions)

AMD R&, R1, R7

OR R&, A1, RS

XOR R10, R1, A1

IM

Figure 1.2 A set of instructions that depends on the ADD result uses forwarding paths to avoid the data
hazard. The inputs for the SUB and AND instructions forward from the pipeline registers to the first ALU
input. The OR receives its result by forwarding through the register file, which is easily accomplished by
reading the registers in the second half of the cycle and writing in the first half, as the dashed lines on the
registers indicate.

Question 6: Total Points (10)
Read the paper title “Reducing Data Hazards on Multi-Pipelined DSP Architecture with
Loop Scheduling”, and answer the following question.

Describe the loop scheduling algorithm and explain how loop scheduling algorithm is
better than other algorithms?

Solution:
Research-paper based question.

