CS704 - Advanced Computer Architecture-II

Solution to Assignment 4

The purpose of assignments is to give you hands on practice. It is expected that students
will solve the assignments themselves. Following rules will apply during the evaluation of
assignment.

e C(Cheating from any source will result in zero marks in the assignment.

e Any student found cheating in any two of the assignments submitted will be awarded
"F" grade in the course.

e No assignment after due date will be accepted.

Question 1: Total Points (5+10=15)

The Alpha 21264 uses a virtually addressed instruction cache, removing the TLB
from the critical path on instruction fetches. The use of virtually addressed caches
can reduce time to fetch data from the cache, but can lead to problems (as discussed
in lectures).

(a) The 21264 eliminated aliases in the virtually addressed cache by checking eight
different locations on each access. Other systems use page coloring to do the
same thing. Is this really necessary for instruction caches? Explain.

(b) Virtually addressed caches often need to have more tag bits than physically
addressed caches, both because virtual addresses are often longer than physical
addresses and because virtually addressed caches need to store additional tag
bits to distinguish cache blocks from different processes. How much added
overhead does this contribute? Assume 64-bit virtual addresses, 8-bit process
identifiers, and a physical memory that can hold up to 64 GB of main memory
(i.e, physical tags need only be large enough to handle 36-bit physical
addresses). How does overhead vary for different cache block sizes?

Solution:
(a)

The 21264 does not allow writes into the executable segment of the program. The
instruction cache is read only. However multiple virtual pages might refer to the
same physical page as is the case with shared libraries. Even if multiple aliases are
present in the instruction cache, they would all return the same value since no
process can write to the cached values.

(b)

The problem states that we have 64-bit virtual addresses, 8-bit process identifiers,
and 64GB of main memory. It takes 36-bits to address a location in main memory.
Since we do not have any information about cache sizes, we can only say that a
virtual address tag would require 28-bits more in space than a physical address tag.
In addition, we now have to store an 8-bit process tag since programs can have
virtual addresses in common. This gives a total of 36-bits in overhead. If we keep the
page size constant, changing the cache block size does not have an effect on the
overhead. It would only serve to decrease the number of bits used for the cache
index.

Question 2: Total Points (20+5=25)

Prefetching is a technique that allows the "consumer"” of data to request the data to
its cache before it needs them. With multiprocessors, we can think of the "dual” of

this technique where the "producer” of the data "evicts" the data from its cache after
it is done with them. An extension of such "postflushes" could be to send the data to
the next processor that needs the data, in cases where that can be determined.

(a) Assume a shared-memory multiprocessor system that takes 100 cycles for a
memory access and 300 cycles for a cache-to-cache transfer. A program running
on this machine spends 60% of its time stalled on memory accesses and 20% of
its time stalled on synchronization. Of these memory stalls, 20% are due to
producer-consumer data access patterns where the writer of data can identify
the processor that will read the value next. In these cases, producer-initiated
communication can directly transfer data to the cache of the next processor
needing the data. This will reduce the latency of these memory accesses from
300 cycles for a cache-to-cache transfer to 1 cycle for a cache hit. Another 30% of
the memory stalls are due to migratory data patterns where data move from one
processor to another, but the migration path is unclear to the source processor.
In this case, a producer-initiated communication primitive, such as "postflush,"
can reduce the latency of the memory access from 300 cycles to 100 cycles.
Further assume that all the synchronization is due to tree barriers and that the
tree barrier overhead can be reduced by 40% with producer-initiated
communication. Assuming no other overheads, what is the reduction in
execution time with producer-initiated communication?

(b) What memory system and program code changes are required for implementing
producer-initiated communication?

Solution:
(@)

The system spends its time as follows: 60% stalled on memory access, 20% stalled
for synchronization, and 20% doing useful work. Producer-initiated communication
will not reduce the time spent doing useful work. For the memory stall time 20%, or
12% of the total time, is wasted during producerconsumer access patterns where
the writer can identify the next reader. These stalls can be improved from 300
cycles to 1 cycle. Another 30% of the memory stall time, or 18% of the total time,
involves producer-consumer access patterns where the writer cannot identify the
next reader. Whichever processor is the next reader, the stall time can be reduced
from 300 cycles to 100 cycles if the writer postflushes the data from its cache to
memory, making the data more quickly accessible for the reader. The remaining
50% of memory access stalls, or 30% of the total time are not helped by producer-
initiated communication. Synchronization stalls comprise 20% of the total time, and
producer-initiated communication can reduce that by 40%.

Thus,

Execution time original = Y. fraction ;

= Memory stalls + Synchronization stalls + Useful work

2% +18% + 30%) + 20% + 20%

1
1

fraction;
Execution time enhanced = Z i :
speedup;
= Memory stalls + Synchronization stalls + Useful work
=(12%/300 + 18% (100/300) + 30%) + 20% (1 - 40%)+ 20%
=0.68

The total execution time reduction is 32% for a speedup of 47%.

(b)

The cache coherence protocol needs to be changed to include support for producer-
initiated communication. However, these changes need to be done with care to
avoid the possibility of deadlocks. The program software also needs to be modified
to include user-specified hints for producer-initiated communication, just as with
prefetching.

Question 3: Total Points (5+5+5+5=20)

The memory consistency model provides a specification of how the memory system
will appear to the programmer. Consider the following code segment, where the
initial values are A = flag=C= 0.

P1 P2
A =2000 while (flag == 1) {;}
flag=1 C=A

(a) At the end of the code segment, what is the value you would expect for C?

(b)A system with a general-purpose interconnection network, a directory-based
cache coherence protocol, and support for nonblocking loads generates a result
where C is 0. Describe a scenario where this result is possible.

(c) If you wanted to make the system sequentially consistent, what are the key
constraints you need to impose?

(d) Assume a processor supports a relaxed memory consistency model. A relaxed
consistency model requires synchronization to be explicitly identified. Assume
that the processor supports a "barrier” instruction (e.g., the SPARC instruction
set), which ensures that all the memory operations preceding the barrier
instruction complete before any memory operation following the barrier are
allowed to begin. Where would you include barrier instructions in the above
code segment to ensure that you get the "intuitive results" of sequential
consistency?

Solution:
(@)

Because flag is written only after A is written, we would expect C to be 2000, the
value of A.

(b)

Case 1: If the write to flag reached P2 faster than the write to A.
Case 2: If the read to A was faster than the read to flag.

)

Ensure that writes by P1 are carried out in program order and that memory
operations execute atomically with respect to other memory operations.

(d)

Here C is guarded by the flag variable. We need extra synchronization between the
two variables.

P1 P2

A=2000 while (flag == 1) {;}
Barrier Barrier

flag=1 C=A

Question 4: Total Points (5+5+5+5+5+5=30)

In this case study, you will design an I/0 subsystem, given a monetary budget.

Your system will have a minimum required capacity and you will optimize for

performance, reliability, or both. You are free to use as many disks and controllers

as fit within your budget.

Here are your building blocks:

= A 10,000 MIPS CPU costing $1000. Its MTTF is 1,000,000 hours.

= A 1000 MB/sec1/0 bus with room for 20 Ultra320 SCSI buses and controllers.

= Ultra320 SCSI buses that can transfer 320 MB/sec and support up to 15 disks
per bus (these are also called SCSI strings). The SCSI cable MTTF is 1,000,000
hours.

* An Ultra320 SCSI controller that is capable of 50,000 IOPS, costs $250, and has
an MTTF of 500,000 hours.

= A $2000 enclosure supplying power and cooling to up to eight disks. The
enclosure MTTF is 1,000,000 hours, the fan MTTF is 200,000 hours, and the
power supply MTTF is 200,000 hours.

= The SCSI disks described in Figure 1.1.

= Replacing any failed component requires 24 hours.

You may make the following assumptions about your workload:

= The operating system requires 70,000 CPU instructions for each disk I/0.

= The workload consists of many concurrent, random I/0Os, with an average size of
16 KB.

All of your constructed systems must have the following properties:
* You have a monetary budget of $28,000.
* You must provide at least 1 TB of capacity.

_ iy
- i = 1]
. £ E -
& - & = =
= T % % = I § 3
2 . E w2 = & & £
g E E‘ [b - - —
L E @ 14 [==] @ T [T
E v] = E = = - o [[=
= 2 = = g 2 g [s] r E 5 =
[o o e =) = o = =) & & =
SATA 500 $375 dors 7,200 37 &9 12 117 31-65 300 16 0.6M
SAS a7 $150 L 15000 26 3-4 25 285 B5-142 300 g 12M

Figure 1.1 Serial ATA (SATA) versus Serial Attach SCSI (SAS) drives in 3.5-inch form factor in 2006.
The 1/0s per second (IOPS) are calculated using the average seek plus the time for one-half rotation
plus the time to transfer one sector of 512 KB.

(a) You will begin by designing an 1/0 subsystem that is optimized only for capacity
and performance (and not reliability), specifically IOPS. Discuss the RAID level
and block size that will deliver the best performance.

(b) What configuration of SCSI disks, controllers, and enclosures results in the best
performance given your monetary and capacity constraints?

i. How many IOPS do you expect to deliver with your system?
ii. How much does your system cost?
iii. What is the capacity of your system?
iv. What is the MTTF of your system?

Solution:
(@)

If reliability is not a concern, then RAID 0 gives the best capacity and performance;
with RAID 0, we waste no space for redundancy to recover from failures and each
independent disk can be used to handle a random I/0 request. Larger block sizes
amortize the positioning costs, while smaller block sizes ensure that only needed
data is actually transferred; therefore, the block size should roughly match the
request size of 16 KB.

(b)

In our system, we want to purchase as many disks as possible. To best use our
budget of $28,000, we therefore maximize the number of disks, given the following
constraints:

Systemcost = CPUcost + Cntrlercost x Cntrleryum + Enclcost * Enclyum + Diskcost x Disknum
DiSkNum < EnClNum X 8

Disknum < Cntrlernum x 15
28,000 = 1000 + 250 x Disknum/15 + 2000 x Disknum/8 + 150 x Disknum
Disknum = 27,000/417 = 64.8

Since the number of each component must be an integer, we choose

DiSkNum = 64‘, CntrlerNum = 5 and EnCINum = 8

i. Each disk can deliver 285 I0PS. The CPU is not the bottleneck and the
50,000 IOPS controller is not the bottleneck of the system (assuming 15
disks or fewer per string). If all disks are operating concurrently on the
random requests, and the disks are the bottleneck of the system, then the
storage system can deliver 18,240 IOPS.

ii. 1000+ 250 x5+ 2000 x 8+ 150 x 64 = 27,850
Note that even though we have $150 remaining, it cannot be used for
another disk, because we do not have space in any of the enclosures.

iii. 64x37GB=2.31TB
iv.
Failure rate =
(1/1,000,000) + (5/1,000,000) + (5/500,000) + (8/1,000,000)
+(8/200,000) + (8/200,000) + (64/1,200,000)

=0.0001573

MTTF = 1/(Failure rate) = 6356 hours

Question 5: Total Points (10)

Read the paper "Temporal Distribution Based Software Cache Partition To

Reduce I-cache Misses" and explain the proposed cache partitioning algorithm.

Solution:

Research-paper based question.

