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A Machine Learning Approach to Automated Negotiation and
Prospects for Electronic Commerce

Jim R. Oliver1

Abstract

We show how a system of artificial adaptive agents, using a genetic algorithm based learning technique, can

learn strategies that enable it to effectively participate in stylized business negotiations. The negotiation

policies learned are evaluated on several dimensions, including joint outcomes, nearness to the efficient

frontier, and the similarity to outcomes of human negotiations. The results are promising for integrating

such agents into practicable electronic commerce systems. We discuss what a system might look like and

ways in which particular classes of business negotiations could be supported or even entirely automated.

1  Introduction

Even in simple negotiations, people often reach sub-optimal negotiations thereby "leaving money on the table" [1]

[2]. While many factors contribute to missing out on gains from trade—overconfidence, falsely assuming fixed pies,

and the framing of the situation (e.g. [3])—the end result is that parties fail to find agreements which would make

each better off. This well documented fact has led researchers to develop tools to help people prepare for and

participate in negotiations. This paper looks toward future electronic marketplaces and investigates not just

supporting negotiators but also the possibility of fully automated business negotiations.

The challenge of negotiation arises, in part, from the fact that each side has private information about their own

utility function, but is ignorant of the other's values and strategies. Exacerbating this situation is the incentive that

negotiators have to misrepresent their preferences. Finding superior agreements in this dynamic environment of

mutual mistrust is extremely challenging. Given the difficulty of the search, and the failings of humans at this task,

wouldn't it be nice if an information system could search the possibilities effectively for us? We show how a system

of autonomous agents can achieve this goal and learn effective negotiation strategies. Furthermore, based on our

results, we argue that these agents should be integrable into practical electronic commerce systems which would not
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only leave less money on the table, but would enable new types of transactions to be negotiated cost effectively,

electronically, and automatically.

To clarify both the types of negotiations we consider and the opportunities for automated systems, we present a

simple example. Although it is very specific, it illustrates many general issues. Consider the following scenario. A

manager is leaving tomorrow morning on yet another sudden business trip. She has only visited this client once

before and is not very familiar with her destination. She needs to reserve a hotel room—a different one from last

time, as it was not satisfactory. Generally she prefers a hotel close to her client, so she has time both to work out in

the morning, at a hotel gym, and grab a bite to eat before her meeting. Other amenities, such as room service, a

pool, and laundry, are not as important. However, the cost of phone calls is of some interest as she dials in for both

voice mail and e-mail. The only unusual aspect of this trip is there is a chance that she can finish her business in

one day and leave in the evening, rather than staying in a hotel; a hotel with a liberal cancellation policy would be

worth extra to her. Wouldn't it be nice if there were an automated system which could make a satisfactory reservation

for her?

Now consider the same scenario from the point of view of a prospective hotel. Suppose this hotel is close to the

manager's client. Suppose further that the hotel was recently renovated, including upgraded fitness facilities and

installation of some minimal food service facilities that enables the hotel to inexpensively serve a continental

breakfast. Also of note, the hotel is near an airport and often people arrive in the evening and want a hotel nearby,

but haven't made any reservations. Thus, if the hotel is nearly booked with advanced reservations, a few no shows

generally do not lead to any lost income. Wouldn't it be nice if there were an automated system that would help the

hotel find the guests that value its characteristics the most?

Currently, this type of routine business transaction typically does not involve any negotiation between the parties.

There are many reasons, ranging from convention, to agency issues, to the costs associated with negotiating with

multiple parties over multiple issues. Ignoring the first two reasons, if negotiation were very cheap, then a dialog

between the hotel and the customer would be valuable because options could be explored, in real-time, for mutual

gain. The ability to create additional value is the essence of integrative bargaining (as opposed to the zero-sum

distributive bargaining, such as dividing a dollar). An automated system could facilitate this value-creating dialog and

therefore benefit all the parties involved. Furthermore, these automated assistants would be even more valuable if

they could learn good negotiation strategies with minimal supervision. In sum, effective automated agents could not

only help with existing negotiations, but new opportunities for more efficient exchange seem possible.

Although the hotel example is simple and specific, it has properties which are very general. As is usually the case,

neither side knows the other's utility function: the prospective customer does not know the hotel's costs, and the

hotel does not know how much the manager values each feature. While in this case, the electronic dialog would be

about hotel rooms, it should be clear that this type of dialog generalizes to many other negotiations. That is, the
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promise of machine support is not a sophisticated hotel reservation system, but a general purpose system that creates

value by making better deals for each party. Such a system would be especially valuable in any situation where the

product offerings are very dynamic or substantially customized.

2  Research Goals

This stream of research is motivated by two broad questions:

Can automated agents learn strategies which enable them to effectively participate in typical, semi-
structured, multi-issue, business negotiations?

What is required and how does it work?

These general questions beg many, more specific questions. While many avenues of inquiry could be undertaken, this

paper focuses on just two aspects. We create a system of artificial adaptive agents (AAAs), test them in a variety of

negotiation contexts, and evaluate their performance in two ways: 1) the extent to which they can learn to achieve

effective outcomes for the specific games, and 2) their performance compared to published human data. These

investigations are our initial, but necessarily incomplete, efforts at answering our open ended research questions.

Based on what we learn, we propose a more complete system for automated negotiation in electronic commerce.

3  Background and literature review

We review four streams of research that inform the design of a system of automated negotiating agents. The first is

game-theoretic models of bargaining and negotiation. Next are negotiation support systems (NSS) and distributed

artificial intelligence (DAI), which address computer support of human agents and the design and study of distributed,

computing agents respectively. Lastly we review evolutionary computation approaches to decision and search

situations related to negotiation.

3.1 Game theory

The study of bargaining and negotiation has long attracted economists because it is fundamental to exchange and

markets. Early foundations were laid by Nash [4, 5], and the area is still very active. Despite significant effort and

progress, bargaining is incompletely understood; Radner and Satterthwaite [6] note that "adequate theories of

bargaining exist only for the degenerate, polar cases of perfect competition and monopoly” (pg. 1).The following,

more specific objections regarding game-theoretic models of bargaining are raised by Linhart and Radner [6]:

Common knowledge. In particular, most models assume a common prior for the valuation of the

negotiated object to the buyer and seller; yet, "ordinary experience seems to indicate that what makes horse

races is variation among priors" ([6], pg. 216).
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Multiple equilibria. In sealed-bid bargaining under uncertainty, there is a continuum of equilibria, even

if one only considers pure strategies. Even in the simple case of complete information, two prominent

axiomatic solutions, the Nash and the Kalai-Smorodinsky, can predict different outcomes.

Single object. In most models bargaining occurs over a single dimensions, such as price, but in real

negotiations there are frequently many other issues such as quantity, quality parameters, delivery, and so

forth.

These objections suggest that game-theoretic models of bargaining will be difficult to apply to natural situations.

This point is also made by Raiffa [2] who notes, "...I never really used the techniques of game theory—concepts and

ideas, yes, but techniques, no—in my roles as negotiator... The qualitative framework of thought was repeatedly

helpful—not its detailed, esoteric, quantitative aspects. Simple back-of-the envelope analysis was all that seemed

appropriate" (pg. 3). Although it is not yet clear the extent to which artificial agents can learn simple quantitative

models that can be appropriately applied in new situations, à la back-of-the envelope, we are excited by our results in

which automated agents discover rules of thumb for particular situations and which suggest that agents can

appropriately modify these rules of thumb over time.

In sum, game-theoretic models have provided great insights into competitive decision-making, however they fall

short of informing the specific design of computer models—in particular machine learning models—of negotiation.

Put another way, game theory tells us about outcomes we can expect when rational agents bargain, whether these are

artificial or not. The models do not tell, in all cases, a given agent which of many strategies to use in a given

bargaining situation.

3.2 NSS

A disturbing research finding is the extent to which negotiators fail to reach the frontier of negotiation possibilities.

In fact negotiators often leave money on the table, even in relatively simple negotiations. For example, in an

experiment by Rangaswamy and Shell [7] only 4 of 34 dyads made a key integrative tradeoff. The experiment was a

simulated international supply contract which had four negotiable issues, each issue having only four distinct

options.

The challenges of negotiation and the shortcomings of human negotiators have prompted researchers to pursue

computer support of negotiation, known generally as negotiation support systems (NSSs). Although NSSs typically

emphasizes support, rather than automation, the implementations and the computational approaches they employ are

relevant to and suggestive of possibilities for artificial agents. One example of the use of computational techniques

is a concession model of Matwin, Szapiro, and Haigh [8], which hard codes a general strategy of concession in

multi-issue negotiation. A very different NSS of Rangaswamy and Shell [7] employs a computer-based method to

elicit a conjoint representation of preferences. Once the parties have a better understanding of their preferences, they

make proposals electronically. In controlled experiments, the supported users reach better agreements. An additional
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feature of the system is it observes the offers made by each party and, by knowing the preferences of both, can

suggest Pareto improving solutions. This feature raises two issues. One regards incentive compatibility and possible

strategic behavior. Users who are aware that a computer will make suggestions based on the utility assessment

might attempt to game the system by mis-representing their preferences. The second issue is satisfaction; users must

be comfortable with a central system knowing their preferences and observing their offers. One can imagine a secure

electronic marketplace that minimizes this issue, but some users might still be hesitant.

Negotiation support systems (NSSs) are designed to facilitate the various phases of the bargaining process. Because

negotiations are considered complex and unstructured [9], NSS functional requirements have emphasized support

capabilities which are very general; as such, these systems neither lend themselves to nor are intended to be fully

automated. The tools for support are varied; many emphasize mathematical support tools, such as decision trees,

forecasting, and so forth. However, Jelassi and Foroughi [10] have called for tools which address behavioral

characteristics and cognitive perspectives of negotiators.

Woo [11] uses speech act theory to formalize the negotiation process so that machine transmission of messages in

possible. Automation would result from combining this with the appropriate domain knowledge and other benefits

could accrue from repetitive, similar negotiations.

Although NSS research has different goals from this research, we share some of its prescriptive aims and the area

offers important guidance and ideas for more automated negotiators, particularly in the areas of system architecture,

functional requirements, and user interface.

3.3 DAI

Like NSSs, distributed artificial intelligence (DAI) systems provide examples of computational approaches to

decision making. Bond and Gasser [12] characterize the scope of DAI as considering "how the work of solving a

particular problem can be divided among a number of modules ... that cooperate at the level of dividing and sharing

knowledge about the problem and about the developing solution" ([12], pg. 3). The challenges are to coordinate the

modules, with limited communication, in the face of possibly inconsistent knowledge. Most DAI research has

assumed cooperation, or "collaborative reasoning"; conflicts have been limited to issues such as bidding for shared

resources, typically computation. This non-strategic, primarily cooperative approach, typical of most DAI research,

clearly can not be applied to all (competitive) business situations. However, recent research has begun to explore less

cooperative paradigms and is more promising for strategic interaction (see, e.g. Rosenchein and Zlotkin [13]).

3.4 Evolutionary Computation

The most immediately relevant stream of research explicitly investigates machine models of competitive situations

by using the techniques of evolutionary computation in systems of artificial agents. Genetic algorithms (GAs) are

probably the most common evolutionary technique. We describe the algorithm in more detail in §4, but briefly GAs

are techniques inspired by evolution, in particular the concepts of variation and natural selection. In an optimization
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context, a population of candidate solutions is generated and evaluated; the best solutions are assigned the highest

fitness and preferentially chosen to be "parents" and combined to create new candidate solutions that comprise the

next generation. These "children" are just new possible solutions, which are evaluated and the cycle continues.

Using an evolutionary computation approach called genetic programming, Dworman, Kimbrough, and Laing [14]

offer support for the idea that autonomous learning agents can discover particular and attractive equilibria in certain

classes of games. Another example is that of Marimon, McGrattan, and Sargent [15] who study a simple exchange

economy in which agents must use a commodity or fiat money as a medium of exchange if trade is to occur. The

artificially intelligent agents are modeled using classifier systems to make decisions. For most of the economies

simulated, trading and consumption patterns converge to a stationary Nash equilibrium even if agents start with

random rules. The simulations show that multiagent systems of classifiers can eventually learn to play Nash-Markov

equilibria.

There are many other cases of evolutionary algorithms (EAs) being applied to decision situations, such as the

prisoners' dilemma by Ho [16], Miller [17] and Axelrod [18], sequential decisions by Oliver [19], and double

auctions by Rust, Miller, and Palmer [20]. This broad stream of literature, including much else not mentioned,

suggests that the goal of practical, automated negotiating agents is ambitious but attainable.

4  Implementation

The success of evolutionary algorithms in diverse domains, but especially in decision and search problems [21],

make them an appropriate machine learning approach for automated agents discovering effective negotiation

strategies. In our first phase of research, which is reported here, we use only genetic algorithms (GAs). We overview

GAs here, but an excellent introduction is Goldberg [21].

4.1 Genetic Algorithms

In a GA, candidate solutions to the problem are encoded into "chromosomes," which are a representation of a

solution or instance of the problem at hand. While there are no hard and fast rules of representation, a specific

encoding of a problem into binary strings is often done. The GA then operates on the binary (base-2) string

analogously to the way genetic processes operate on our own base-4 chromosomes. While a binary coding is

common, this is not required by the GA.

The basic GA begins with a randomly generated population of candidate solutions. We describe here the standard

binary case; the non-binary case is analogous. The population is the set of chromosomes, which begin as a random

set of ones and zeroes. Typically, each chromosome is evaluated. For example, in the case of maximization, the

chromosome is the input to the objective function, and the fitness of the chromosomes could be the value of the

objective function.
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A new population is created by selecting individuals to be parents for the new population. The basic selection

strategy is to choose parents proportional to their fitness. Thus an individual chromosome that has twice the fitness

of another has twice the chance of being a parent for the new population. Sometimes results are improved by scaling

the fitness according to a non-linear function before the selection routine is performed.

The selected parents are used to create the next generation of the population. While in some cases, new parents are

simply preserved in the next generation, new parts of the problem space are explored by creating new chromosomes.

The evolutionary inspired operators of crossover and mutation are most commonly used. Single point crossover is

one particular approach and works as follows. Assuming the sixth position is the randomly chosen crossover point,

then one child is composed of the first six bits of one parent and bits after position six from the other parent. This

method of crossover can be used to create two offspring from each parent. The other child gets the first six bits from

the second parent and the final bits from the first.

The other primary mechanism of generating variance in the population is mutation. The following is an example of

mutation. If the fifth bit of a child mutates, it changes from a zero to a one or from a one to a zero. Generally every

bit in a chromosome has a small chance of mutating. The probability of a mutation occurring for any given bit is

controlled by a system parameter called the mutation rate. Thus the number of mutations per chromosome depends

on the length of the chromosome and the mutation rate.

After the new population is created, the cycle begins again. Each new chromosome is evaluated for fitness, a new

population is created and so forth. This loop is repeated until a specified stop condition is met. One that is often used

is a stable average fitness. If the fitness of the population has remained rather stable for a number of generations,

then continuing for more generations is not likely to yield better results. Experience with GAs and understanding the

problem being solved are a significant help to creating appropriate stopping conditions.

4.2 Negotiation as Search

Negotiation is a search process. For example, two player, integrative bargaining can be viewed as two negotiators

jointly searching a multi-dimensional space and then agreeing to a single point in the space. Each dimension can be

discrete or real valued, although in our implementation, only discrete values are used. Each party has a multi-

attribute value function over the space of possible agreement points. In the bargaining space, each dimension

corresponds to an issue to be negotiated; each issue has two or more alternatives which are indexed by elements of a

set. For illustration, consider a stylized business negotiation. Suppose a purchasing agent needs to obtain quickly a

particular part from a supplier. The agent might be interested in the issues of price, quantity, and delivery. With

regard to delivery, the buyer might have decreasing utilities for next morning, next afternoon, 2nd day air, and

(several day) ground transport. For the price dimension, the part-worth would be monotonically decreasing in price.

The part-worth for quantity might be an ideal point model. In contrast to the purchaser's values, a supplier would

have different, partially opposing, utilities. The space of bargaining outcomes is {price in [0, Pmax]} X {quantity in
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[0, Qmax]}X {delivery from {next morning, next afternoon, 2nd day, ground}}, although some points might not be

feasible.

4.3 Value Functions

In simulations reported here, simple, additive preference models are typically employed; the part-worths for each

alternative are typically independent, although specific interactions are accommodated in some cases. The part-worths

are implemented as a simple table look up. The set corresponding to a dimension is arbitrarily indexed and a

corresponding payoff set is encoded in the system. In our example, the set for the delivery dimension is {ground, 2

day, next day afternoon, next day morning} which has payoffs of, perhaps, {0, 7, 8, 10} to the customer and {10, 2,

1, 0} to the supplier (the maximum part-worth of 10 is arbitrary). The part-worths are implemented with a non-

associative array, i.e. delivery [1] = ground, and payoff_customer[1,1] = 0. In general, the value, V, of a particular

option X= (x1, x2, ...,xn) is,

V(X) = wi vi(xi)

where vi is the part-worth function for the alternatives for issue i, and wi is a weighting factor that may or may not

be necessary depending on the scaling of the part-worths. Using the previous example, the utility of the outcome

(price = $2.75, qty = 150, delivery = next morning) is V($2.75, 150, next morning) = v1($2.75) + v2(150) +

v3(next morning).

4.4 Strategies

A set of random, feasible, initial strategies are created. The strategies currently in use by the system are sets of

simple, sequential, threshold rules. The rules are meant to be intuitive, straightforward to explicate, and not too

difficult to elicit. An example of the type of strategy we use is the following: consider the seller of an item, such as

a car. The strategy might be to initially, accept any offer whose value is greater than a threshold T1. If the

prospective buyer's offer does not meet that threshold, then make a counter offer. If this counter offer is not accepted,

and the buyer comes back with a new offer, the seller will compare this with another, typically different, threshold,

T2. Again, if the threshold is not met, a counter offer could be made. At any point, either party might choose to

discontinue bargaining. This type of rule structure can be extended for an arbitrary number of rounds, but for practical

purposes the real strategies are limited in depth. The current system only uses strategies with this simple structure,

but more general strategies could be used.

4.5 Messages

Offers made by each party are communicated via messages, which are sent privately to the other party. This approach

can be extended to more than two parties, so as to handle the cases of multi-party negotiation or sealed bid auctions,

in future work. In posted price auctions, the messages could be broadcasted, or posted electronically, to all

participants.
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4.6 Operation

Figure 4.1 summarizes system operation. Each of the two artificial players is initialized with a set of random

strategies, and each randomly chooses a strategy to test. Within the bargaining cycle, one player is randomly chosen

to start the bargaining; this player sends an offer message. The other player's strategy evaluates the message and

either accepts the offer or makes a counter-offer. This continues until agreement is reached or one of the players

exhausts the strategy being tested and sends a quit message. The system continues to test strategies in this manner,

for a specified (a system parameter) number of times. Then the genetic algorithm is run and new a population of

strategies is created. This outer loop is also continued until an exit condition is met.

4.7 Comments

Earlier we cited three limitations of typical game theoretic models of bargaining. The bargaining games played by

our artificial agents are designed with explicit awareness of these limitations. The negotiations are not over a single

object, but like most business negotiations are inherently multi-dimensional. All games have multiple equilibria and

which is selected is specifically explored. Lastly, the usual assumption of common knowledge is not required in this

computational model: the artificial agents, are initially devoid of any explicit knowledge about other agents, and they

do not even explicitly know their own payoff function, which is provided by nature. This information structure is in

the spirit of Young [22] (p. 5) who notes: "Typically, the parties do not know each other's utility functions with any

degree of accuracy... Usually they do not know each other's BATNAs [best alternative to a negotiated agreement]."

However, each agent does have a strategy, and the agent's population has a distribution of strategies, which changes

over time as strategies co-evolve. Natural selection shapes this distribution by culling strategies that are less useful

given the current distribution of opposing strategies.
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Initialize Agent

Choose Random  
Strategy to Test

Choose Random  
Strategy to Test

Bargain

Run GA

Done

Initialize Agent

Agent 1 Agent 2

Run GA

Figure 4.1. System operation.
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5  Experiments and Results

We investigate the performance of the AAAs across five types of games. We operationalize performance with several

standard performance measures, as described below. In addition, each particular run requires specific system parameter

values, also described below.

5.1 Game types

The first of the five game types, called no conflict (§5.4), has no competitive aspect, but provides a useful

benchmark. The next focuses on a pure distributive bargaining problem (§5.5) in a reduced-dimension environment.

The third is a simplified integrative bargaining problem (§5.6), a low dimension, stylized business negotiation. The

fourth (§5.7) involves a larger dimensionality example from Raiffa (1984), for which human results are published;

the outcomes of artificial, adaptive agents compares favorably with that of the human subjects in this stylized, but

fairly realistic, labor negotiation. The fifth (§5.8) is a stylized international business negotiation by Rangaswamy

and Shell [7].

5.2 Performance Measures

Several statistics and measures are tracked regarding the performance of individual chromosomes (strategies), the

population as a whole, and features that characterize the bargaining sessions.

The most important measures characterize the performance of individual agents and the dyads. AAAs should achieve

high payoff outcomes individually. We measure the individual payoffs in terms of the agents' endowed value

functions, which we know precisely; this information enables statistical tests of agent learning by comparing

individual payoffs achieved after a training period with (1) agreements in the first generation that arise from

agreements by the random strategies the agents are initially endowed with, and (2) the expected payoff to each agent

of a randomly selected point in the bargaining space.

Agents should not only achieve excellent individual payoffs, but they should achieve excellent outcomes collectively

as well. Following Bottom and Studt [23] and Foroughi, Perkins, and Jelassi [24] we measure joint payoffs as the

sum of the individual payoffs. We use the same statistical tests as above to compare the joint payoff with

agreements in the first generation of bargaining, and the expected payoff from a random point in the feasible space.

Human negotiators often choose agreements that are below the pareto frontier. We compute nearness to the frontier

as follows. For each agreement, a list of all pareto superior agreements on the frontier, is generated, and the

improvement in payoffs, for each agent, associated with these points is calculated and averaged. The averaging is

both over the set of dominating points and over all the agreements in the generation. This inferiority measure has

two benefits. Besides being more encompassing than just Euclidean distance to frontier, keeping the measures

independent for each agent means that no interpersonal tradeoff measures are made.
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5.3 System parameters

Each run of the system requires several parameters to be specified as follows.

Population size This is set to 20. These 20 chromosomes make up the strategy set for each agent. Each chromosome

is a threshold decision rule that can begin and end a single bargaining session. Twenty was chosen as a small

population size, yet one that consistently yielded results. Pilot tests with smaller population sizes were not

consistent in performance. Optimizing the population size is not simple, and is not the goal of this work.

Number of sessions This is set to 20. Each generation consists of 20 bargaining games. Because there are 20

chromosomes per agent, each chromosome will participate, on average, in one bargaining game per generation. The

strategies for testing are selected randomly (uniformly), with replacement, so typically, in each generation, some

strategies are tested more that once and others not at all. The random selection was used to insure that no cycles are

created in which, for example, strategy one of agent one always plays the same strategy of agent two.

Number of generations This is set to 20. Each run consists of 20 generations. This was adequate time for the agents

to learn reasonable strategies.

Crossover rate This is set to 0.5, which favors neither parent in crossover. Each part of a child's chromosome is

equally likely to come from either parent.

Mutation rate This is set to 0.05, which implies that, on average, one in 20 elements of the offspring will be

different from both parents. Mutation occurs on individual threshold values and on individual components of the offer

vectors. This mutation rate is perhaps a little higher than some GA applications, but it is not unusual either. Like

population size, this parameter was chosen based on published GA applications and on brief pilot studies;

optimizing this system parameter is left to later research.

Number of offers This is set to 3 for the experiments reported here. The value of 3 allows each side to make up to 3

offers before the game is terminated, assuming neither side has agreed. This parameter, like other individual

parameters, could be asymmetric between agents, but this is not explored in this research.

5.4 Experiment 1: system verification

For simply verifying the operation of the system, the artificial agents are endowed with the same value functions.

Consequently, the agents should converge to the unique, joint maximum, i.e. the unique pareto optimum. The

absence of conflicting interests makes this test essentially two, interrelated, discrete optimizations — the difficulties

of competitive, co-evolution are deliberately removed.

Agent value functions.

Figure 5.1 shows the value functions for the agents for six alternatives, one through six, for each of two issues, A

and B. Both parties are happiest with the option (A=6, B=1).
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Results.

Figure 5.2 shows the results for a single population pair (each with 20 chromosomes, or strategies), initially

endowed with random strategies, after 20 generations. The smallest dots, on the line, are the possible agreement

points, and the slightly larger dots are noisy plots of the actual agreements. The noise is intentionally added to

clearly show multiple agreements at the same point. The pareto optimum is in the upper right corner. In this run,

most all of the agreements are the maximum possible, except one which is in the center of the graph. This poor

agreement could have resulted from a mutated strategy.

Figure 5.3 shows another run in which the average payoff is actually similar to that in Figure 5.2, but the

population converged early, prior to reaching the maximum. Most of the agreements are just below the maximum in

the Northeast corner. Early convergence is a general problem of GA based approaches. While there is no absolute

solution, there are strategies that help to minimize it [21], but these are not the focus of this investigation.

0

1

2

3

4

5

1 2 3 4 5 6

Issue B

Issue A

Figure 5.1. Value (y-axis) for each agent for two issues. Each issue has six alternatives (x-axis).
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Figure 5.2. One run of the no conflict game.

Y-axis: Agent 2 payoffs 
X-axis: Agent 1 payoffs

min max

max

min

Figure 5.3. Another run of the no conflict game.
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Figures 5.2 and 5.3 visually show bargaining agents agreeing to points that are much better than if they were just

agreeing to random points in the bargaining space. To test more formally whether the agents are learning, we use

several statistical tests, which are summarized below.

Individual learning. We perform a one-sided t-test comparing the payoff to each agent in the first five

generations, averaged over ten runs, with those of the last five generations, assuming a pooled variance.

Individual comparison with a random point. We perform a one-sided t-test of the hypotheses that the last

generation payoffs are greater than the expected value of a random point in the bargaining space.

Dyad learning. We perform a one-sided t-test for the hypotheses that the dyad learns from the first five to the

last five generations, as measured by the joint payoff.

Dyad comparison with a random point. We perform a one-sided t-test of the hypotheses that the joint

payoffs for the dyad in the last generation are greater than the expected value of a random point in the

bargaining space.

Nearness to the frontier. We perform a one-sided t-test comparing the nearness to the frontier for each agent

in the first five generations with the nearness in the last five generations, assuming a pooled variance.

Table 5.1 summarizes the results of the t-tests. The agents exhibit significant learning behavior; all of the

hypotheses were strongly supported.

Test P-Value

Individual learning (Agent 1)  6.5 x 10-5

Individual learning (Agent 2)  6.5 x 10-5

Individual payoff better than random
(Agent 1, expected random payoff = .5)

 1.1 x 10-7

Individual payoff better than random
(Agent 2, expected random payoff = .5)

 1.1 x 10-7

Dyad learning  6.4 x 10-5

Dyad payoff better than random
(Expected Joint Payoff From Random Agreement = 1.0)

 1.1 x 10-7

Nearness to frontier (Agent 1)  6.3 x 10-6

Nearness to Frontier (Agent 2)  6.3 x 10-6

Figure 5.1. Results of statistical tests for the no conflict game.

5.5 Experiment 2: pure distributive bargaining

Agent value functions.

Figures 5.4 and 5.5 show value functions for the agents for six alternatives, one through six, for each of two issues,

A and B. Player 1 prefers (1,1), i.e. alternative one on issues A and B, while player 2 wants (6,6). Like games in

later sections, this game has multiple Nash equilibria; however, unlike most of the games reported later, there is no
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prominent equilibria — the frontier is flat as shown in Figure 5.6. While cooperative game theory deals explicitly

with such situations, classical non-cooperative game theory does not predict which equilibrium will be selected.

Results.

Figure 5.7 shows the results for a single run. In this case, as in other runs of the same game, there is some

clumping of the agreements, due to convergence of the population of strategies. The particular location of

convergence tended to vary and we defer further investigation of pure distributive bargaining to future research; the

focus in this paper is on integrative bargaining because of the opportunity for mutual gain and the relevance to

typical, commercial exchange situations.
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Figure 5.4. Values for six issue A options.  Figure 5.5. Values for six issue B options.
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Figure 5.6. Feasible payoffs graph. Figure 5.7. Population after 20 generations.
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No statistical results are given because the nature of the game makes all measures meaningless: all agreements are

always on the frontier, and all joint values are the same. The only test of interest would be individual tests to see if

either agent is consistently outperforming the other. Such a result would suggest an error in the system as our agents

are symmetric. No significant differences were found.

5.6 Experiment 3: simple integrative bargaining

This game is a stylized business negotiation that captures a simplified purchasing situation in which the agents

bargain over price, quantity, and delivery. The agents have opposing value functions within each issue, but the

importance across issues varies such that rather than compromising on each issue, each player should give up

everything on the issue of least importance and get the maximum on the issue of greater importance.

Agent Value Functions.

Table 5.2 shows the value functions for the agents. For agent 1, the most important issue is price, whereas for agent

2 the most important issue is quantity. The expected joint payoff, the sum of the both agent's payoffs, from a

random point in the bargaining space is 0.98. The joint maximum is 1.36.

Results.

An example of AAA agreements and the entire bargaining space is shown in figure 5.8. The large dots are the

agreement points for the final generation of one run of bargaining, and the smaller dots are all the possible

agreements. The larger dots have noise added intentionally to clarify the number of agreements at a discrete point. In

the figure, the average payoff to agent 1 is 0.66 and to agent 2 is 0.53, for a joint payoff of 1.18.

Y-axis: Agent 2 payoffs 
X-axis: Agent 1 payoffs

min max

max

min

Figure 5.8. Results for one run of the integrative game.
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Values
Issues Alternatives Agent 1 Agent 2
Price low 0 .25

.11 .19

.22 .12

.33 .06
high .44 0

Quantity few .22 0
.17 .12
.11 .25
.06 .38

many 0 .56
Delivery next morning .33 0

next afternoon .22 .06
2nd day .11 .12

7-10 days 0 .19

Table 5.2. Value over three issues, price, quality, and delivery,
for two players.

The same statistical tests, show in Table 5.3, are applied to the agents as in the first game. On balance, the agents

have no problem learning in this simplified business negotiation context.

Test P-Value

Individual learning (Agent 1)  0.00066

Individual learning (Agent 2)  0.00014

Individual comparison with a random point
(Agent 1, expected random payoff = .51)

 0.014

Individual comparison with a random point
(Agent 2, expected random payoff = .47)

 0.056

Dyad learning  1.8 x 10-9

Dyad comparison with a random point
(expected joint payoff from random agreement = 0.98)

 0.00047

Nearness to Frontier (Agent 1)  6.4 x 10-8

Nearness to Frontier (Agent 2)  2.4 x 10-8

Table 5.3. Statistical test results for integrative game.

The GA methodology facilitates a detailed analysis of the evolution of high performing strategies. Figure 5.9 shows

that, agents learn not to accept an offer too soon because they might come across a better offer later. The strategy

cannot wait too long as the bargaining will be cut off. The top of Figure 5.9 shows the population starts out by

accepting many initial offers; however in the last five generations (out of 20), many agents do not accept until the

middle of the bargaining session.
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Offers to Acceptance (first 5 generations)
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Figure 5.9. Offers to acceptance early in the run (top) and late in the run (bottom).

5.7 Experiment 4: City vs. AMPO

The negotiation games reported so far have been contrived and stylized, both for simplicity and to expose the

operation of the automated agents in a basic but crisp manner. Real negotiations, even simple ones, are more

complicated than those of the previous sections. One important factor is complexity, especially in terms of

dimensionality; high dimensionality creates a challenging negotiation environment and human subjects are more

likely to accept inferior offers.

Agent value functions.

In this section, we recreate an experimental game reported in [2]. It is a stylized labor negotiation between an city

and a police union, called AMPO. The size of the bargaining space, as implemented, is 13,219,200 possible points

of agreement. There are 11 dimensions, each with anywhere from 2 to about a dozen alternatives. The original

problem had one dimension that had a (nearly) continuous interval -- the payoff was linear over a salary increase

range of 500 to 750 dollars. Given that fractional amounts were unlikely, this effectively made the dimension

discrete, but we more coarsely quantized the entire dimension into 12 points. As in other games, we scale the payoffs

to the range of 0 to 1.
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Results.

The result of one run is shown below in Figure 5.10. A visual comparison of the agreements reached by human

agents versus agreements reached by the artificial agents shows no performance differences. Both the humans and the

AAAs occasionally reach agreements very close to the frontier, but typcially both were a similar distance away2,

although the humans varied more than the AAAs. The results of a longer series of ten runs suggest that neither

group outperforms the other, but there were some differences. The humans representing the City, on average,

achieved higher average payoffs for themselves than did the AAAs, 0.70 versus 0.65. A t-test of the average AAA

payoffs with the mean payoff for the humans representing the city had a p-value of 0.06. Opposite results held for

the agents representing AMPO. In this case, the AAAs outperformed the humans, earning mean payoffs of 0.58

versus 0.53. This difference was mildy significant (p = 0.04). Although these performance differences are interesting

and deserve further investigation, a more important comparison is the joint payoff; on average the joint payoff was

the same for the human agents and the AAAs, 1.23. Thus neither group outperformed the other.

Humans v. AAAs Agreeements
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Frontier

Figure 5.10. Human agreements and AAA agreements for one run. Neither outperforms the other.

2 Two features of Figure 5.10 deserve mention. First, the scales do not cover the entire payoff

range of zero to one, which highlights differences in agreements. Second, only some of the frontier

points are shown, for clarity.
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5.8 Experiment 5: Stylized International Business Negotiation

Rangaswamy and Shell [7], report on a four dimensional, stylized international business negotiation. The game only

has 256 discrete, possible points of agreement, but unaided humans were not effective at making integrative

tradeoffs: only 4 out of 34 pairs did so in a series of experiments. Using an NSS of their design, the human subjects

in the assisted case performed significantly better, but even in this case fewer than 50% [7] achieved the main

integrative solution. This game has the characteristic that only ordinal preferences are induced in the laboratory. This

is recreated for the AAAs by having the agents play against multiple instances of value functions which fit the

ordinal preferences.

Agent Value Functions.

The experiment is a simulated international business negotiation between an American healthcare company and an

Eastern European medical equipment supplier. There are four issues to be negotiated: price, delivery, the currency of

payment, and the location to adjudicate disputes. The options for each issue are,

Price: 180, 195, 210, 225 K$

Delivery: 6, 8, 12, 14 months

Currency: US$, Euro$, other hard, Hungarian

Dispute: US, London, ICC, Hungary

A key element of the preference structures in this game is the built in integrative tradeoff of Hungarian currency and

14 month delivery. This tradeoff is the one that humans have difficulty finding, but is the single most valuable.

Results.

The human results reported by Rangaswamy and Shell [7] are measures of the frequency that key integrative tradeoffs

are made. Table 5.4 shows the frequency of key integrative tradeoffs, in the international game, for humans and

AAAs. Recall that the primary integrative tradeoff is Hungarian currency and 14 month delivery. A 12 month

delivery is the second most preferred alternative, on the most important issue, for the supplier. Similarly, European

currency is the second most preferred alternative, on the most important issue, for the customer. While the

Hungarian-14 month combination is the most integrative, the others are also beneficial, those shown in table 5.4 are

the ones reported by Rangaswamy and Shell [7]. The AAAs results are summed for 5 types of customers. The results

of the experiments are that the AAAs learn to achieve outcomes that are in between the unaided and the aided

humans. In general, while the AAAs found the best integrative tradeoff frequently, they settled on many more "other"

agreements, as opposed to the two nearly as good tradeoffs, when compared with the human case. Presumably this

result is due, in part, to that fact that the GA implemented for this system is very simple. Manipulation of

population size, different crossover strategies, diversity management, and other techniques could probably improve

performance at least slightly, and possibly substantially.
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Human Artificial
Adaptive Agents

Face-to-Face
(Unaided)

Using Negotiation
Analyst

Total for 5
customer types

Hung—14 months 4 15 358

Hung—12 months 9 3 63

Euro—12 months 15 6 22

Other 6 8 464

No Agreement 0 2 93

Total 34 34 1000

Table 5.4. Frequency of integrative tradeoffs made in the international business negotiation.

5.9 Relevance and Discussion

While the results presented here are preliminary, these initial investigations strongly suggest that artificial agents can

learn effective strategies for specific negotiation games. As argued before, given the difficulties humans have at low

dimensionality negotiation games, it is not obvious that cognitively simple artificial agents would be successful at

such a task. The incomplete information environment that is challenging for humans is, of course, similarly

challenging for artificial agents. Further hindering the agents, the genetic learning approach operates in a dynamic,

co-evolutionary environment, rather than the static world of a traditional optimization3. We submit that the ability

of such simple agents to learn the same games that humans find challenging is promising on many fronts, but

especially for electronic commerce.

The performance of artificial agents compares quite favorably with that of human subjects. The performance of

AAAs certainly does not dominate the human case, rather AAAs sometimes performed better and sometimes

performed worse, when measured in terms of ex-post efficiency and ability to make integrative tradeoffs. The

circumstances in which one outperforms the other is an important area of future research, but we submit that the

current successes of the AAAs are encouraging, exciting, and promising.

6  Architecture of a System for Electronic Commerce

We have argued that the results presented here are promising, but neither the system of AAAs developed nor the

studies undertaken, are the same as fielding a practical system. However, the results of the previous section inform

3  There is an important distinction between this game environment and the application of GAs to

optimization. In optimization, there are no external dynamics for the GA, i.e. typically the environment

does not change. Thus a given chromosome always has the same raw fitness (algorithms to adjusts the

raw fitness based on population characteristics might be used for the purpose of encouraging population

diversity). The competitive environment of coevolution is fundamentally different and more difficult.
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the design of a more complete system. In this section, we briefly consider what it would take to get this ability into

practice, how it might work, and what would have to be learned first.

6.1 System Outline

Creating a working system for electronic commerce needs to address user, marketplace, and functionality issues that

we have, until now, ignored. Figure 6 outlines a possible system architecture. We discuss each element of the

system in turn.

6.2 User Interface

This is point of interaction with the following system functions,

1. eliciting preferences from user,

2. eliciting, browsing and manipulation of strategies,

3. updating the database of products and services, their negotiable issues, and so forth,

4. reporting.

Points (1), (2), and (3) are described below. The reporting function (4) is primarily intended to inform a manager or

principal as to how the agents are performing. The average length of negotiations, changes over time, and

profitability of the agents are just three aspects of bargaining behavior that might be valuable for management.

6.3 Preferences

Until now, the precise objects of negotiation have been abstract and stylized. But a practical system needs to buy and

sell real products and services. This requires the system to know about the specific attributes of the products of

interest, information that can be stored in a local or remote database.

The utility functions for these products need to be elicited, and these functions will be stored, most likely, locally—

this is the type of information people want the ability to keep private. Many researchers, as well as commercial

concerns, have developed viable computer-based approaches to utility function elicitation. Rangaswamy and Shell [7]

report on one such elicitation procedure that could be used.

If new products, or new features for an existing product, become available, both the new attribute data and the user's

value over that attribute need to be incorporated into the system. The PC industry offers two examples. First,

manufacturers have recently started to bundle modems into new PCs, rather than the consumer purchasing these

separately. If the consumer's DSS already knows about both PCs and modems, then relatively minor changes are

required; the bargaining space must be modified to include this new possibility. A second, more complicated case is

processor speed. The introduction of, say, 200 MHz Pentium chips presents an alternative on the processor

dimension that the user will not have placed a value on if the option did not exist when values were elicited.
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Figure 6. Architecture for automated negotiation system.

6.4 Strategies

The bargaining strategies and their modification are the centerpiece of a system of negotiating agents. In this research

simple threshold rules have been used. A practical system needs the flexibility to support different types of

strategies. Which additional types of strategies should be used or allowed by the AAAs is an important, open

question.

In the system created for the experiments reported above, the initial populations of rules were generated randomly. In

a practical system, depending of the environment the agents are to exist in, an alternative to random initialization

might be desired. Humans rarely approach a novel situation de novo, and there is no reason for AAAs to do so either.

Strategies could come from other agents or from humans. In the latter case, we might elicit strategies directly, or a
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system could watch the user and infer a strategy based on observed negotiations. The following discusses the

possibilities in more detail.

1) Random initialization. If there is an effective learning algorithm, and an appropriate venue for

learning, then random starting strategies might be the most cost effective.

2) Obtain strategies from other AAAs. Strategies of AAAs in similar situations should make a

good starting point. This approach requires a way for the system, or the user, to understand

which agent strategies would be appropriate for a novel situation.

3) Direct strategy elicitation. The simple threshold rules used in this work have a natural appeal

because they are similar to the way human agents are sometimes told to negotiate for

principals. For example, a human agent might be told, "Don't settle for less than X," or "Try

to get Y, but it's OK if you can only get Z," and so forth. These types of strategies should be

fairly straightforward to elicit from a user. To elicit other types of strategies could require a

new representation scheme; this deserves further investigation.

4) Bootstrapping. This might also be called passively seeding the system, or apprenticeship

mode. A useful, but possibly difficult undertaking, would be to design an algorithm that

observes actual negotiations and infers which strategies are being used by one side, or even

both sides. If both sides are estimated, simulations could be run to predict the results of

alternative strategies. If an effective learning algorithm is available, then even a quick and dirty

bootstrap model could be useful, as a starting point.

Depending on how the initial strategies are arrived at, additional modifications, prior to fielding agents in the

marketplace, might be desired. We consider three possibilities.

1) No learning. If the initial strategies are believed to be of a high enough caliber—perhaps they

were elicited from an experienced negotiator—then modifications to the initial rule set might

not be required.

2) Off-line learning with simulated opponent. If a credible model of the opponent can be built,

then a simulation approach can be taken to learn strategies that hopefully will be effective. An

extension to a static opponent model would be to posit an adaptive procedure for the

opponent. (See Sebenius [25] for an overview of this line of research.)

3) Off-line learning in a practice forum. Another possibility is to conduct practice games—with

other market participants and not models of them—and have agents learn in this forgiving

environment. The problem with this approach is that if the negotiations are non-binding then

there is additional incentive to misrepresent preferences, because principals might not want to

reveal information, or they might wish to establish a particular reputation. Anonymous



26

practice sessions would remove any reputation building incentive, but such a scenario is still

not equivalent to real, live, binding negotiations4.

Finally, when the user has confidence in the strategies available for use by the system, she will "field" the agents to

the marketplace. Whether and how these strategies continue to be modified, based on the negotiation experiences,

needs to be decided by the user. There are three possibilities.

1) Fixed strategies. One approach is to field static agents. Recall that the simple GA approach to

learning occasionally created new strategies that agreed to low-value points in the bargaining

space. While the effectiveness of the GA could undoubtedly be improved, users still might

wish the agents to remain static, especially if the performance of the agents is stable. This is

the if-it-ain't-broken-don't-fix-it philosophy. Static agents might also be justified in

marketplaces which are relatively static, or in cases in which the downside of a poor strategy

is large. Many financial transactions have a significant downside and current automated

financial trading systems are carefully controlled; significant strategy changes in most of these

systems are programmed from the outside the system, rather than the system selecting

radically new strategies on its own.

2) GA suggests. A GA, or other learning algorithm, might suggest new strategies, but be

prevented from acting on them without human approval.

3) GA modifies. In the most automated system, a GA—or any other learning algorithm—

discovers and tries new strategies. The inconsistent performance of the GA approach might

restrict this to less important transactions, or to games which have less of a downside. As an

example, compare the divorce game to the no conflict game. The average difference between

agreements on the pareto frontier and agreements from the set of points that dominate no

others is much less in the divorce game than it is in the no-conflict game.

6.5 Control and Communication

All of the system activities must be coordinated, and this is the job of the control module. This module could also

handle exceptions. An example is a supplier sends a customer a message about a product and the message includes an

attribute that is not in the product database of the receiving system, or for which value function information has not

been elicited.

The final module of the system is the communications module; its job is to interface to the electronic marketplace.

4 "Cheap talk" is the game theoretic term for low-cost, nonbinding, nonverifiable communication,

and it has been an active research area. See, for example, Farrell [25] for an example of how cheap

talk can achieve partial coordination among market participants.
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6.6 Comment

This above list is focused on local systems and neglects services and features that are likely to be the domain of a

centralized system, or will be distributed throughout the system. Security features, such as authentication and

certification, secure payment mechanisms, and measures to protect the systems from unauthorized intrusions are all

needed. These security features are needed in any electronic commerce networks and are not unique to the case of

negotiating agents. Significant academic and commercial efforts are currently directed toward these problems and we

leave this important area for others.

7  CONCLUSIONS

We showed how AAAs, using simple satisficing rules can, from a random start, learn to play negotiation games

under the "direction" of a basic GA. While refinements to the GA, such as improved crossover and better diversity

management, likely would improve effectiveness, the performance of these basic agents stands on its own merits.

Systematic, statistical comparison with humans shows the ability for AAAs to perform similarly to humans, and

even exceed their performance. That this level of success would be achieved was not a priori obvious, and the results

hint at exciting possibilities for electronic commerce.

The success of the AAAs illustrates the power of the adaptive approach. One might not expect such simple agents to

exhibit such complex behavior and to perform so well. For example, one might wonder, how do the agents know the

unknown about the other agent? In fact, the agents do not have explicit models of the other agents, yet they have

strategies that are adapted to their environment, which is created by the other agents.

This research reinforces the idea that computational science, in general, and evolutionary algorithms, in particular,

provide a rich tool for the study of bargaining and negotiation. The set of programs developed for this research allows

us to put negotiation dynamics under a microscope. GAs were chosen as a robust and general learning mechanism,

and we are encouraged by the success of the simple GA in a difficult, dynamic, coevolutionary environment. In well

defined situations, such as many optimization contexts, it is possible to find a better performing, specialized

algorithm. Similarly, it might be possible that specialized negotiation learning algorithms will be developed;

insights from this and related work should inform such efforts as the field matures.
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