	[image: image1.png]

	Assignment No. 04
Semester Spring 2012
Compiler Construction CS606
	Total Marks: 20
Due Date: 19/06/2012

	Instructions:
It should be clear that your assignment will not get any credit (zero marks will be awarded) if:

· The assignment is submitted after due date.

· The submitted assignment does not open or file corrupt.

· The assignment is copied (from other student or copy from handouts or internet).
· Student ID is not mentioned in the assignment File or name of file is other than student ID.
· It is in some format other than .doc (MS Word Document).
For any query about the assignment, contact at cs606@vu.edu.pk

	BEST OF LUCK

	Question Marks 20
You were required in assignment-3 to construct the LR(1) action/goto table for the following grammar in the context of Canonical Collection.

S --> AS | b

A --> SA | a

Now in this assignment, your task is to list down any shift/reduce or reduce/reduce conflicts found during the construction of the LR(1) action/goto table for the above grammar in assignment-3.
What is the effect if we always shift for a shift/reduce conflict and if we always reduce for a shift/reduce conflict?

Solution:
Action

Goto

State

A

B

$

S

A

0

S1

S2

3

9

1

R5

R5

2

R3

R3

R3

3

S1

S8

ACC

7

4

4

S1

R4

S8

R4

6

5

5

S1

S8

6

5

6

S1

R2

S8

R2

7

4

7

S1

S8

7

4

8

R3

R3

9

S1

S2

10

9

10

S1

R2

S8

R2

R2

7

4

From the Action/Goto tables, it's clear to see that there are shift/reduce conflicts in states 4, 6, and 10 when the look-ahead is either a or b. The actual LR(1) items in conflict in the states are:

State

[A -> SA* , {a,b}]

Reduce on a/b

4

[S -> *b , {a,b}]

Shift on b

[A -> *a , {a,b}]

Shift on a

States

[S -> AS* , {a,b}]

Reduce on a/b

6 & 10

[S -> *b , {a,b}]

Shift on b

[A -> *a , {a,b}]

Shift on a

If we always shift for a shift/reduce conflict, we would never reduce A -> SA, and we would only reduce S -> AS with $ as look-ahead. This is similar to removing the production A -> SA from the grammar. It would cause us to accept only the strings "ab", "aab", "aaab", etc.

If we always reduce for a shift/reduce conflict, we never have more than two non-terminals on the stack, but should be able to generate all strings in the language.

