
Programming C# for Beginners

Programming C# is a book written in step-by-step tutorial format for beginners and

students who want to learn C# programming. It is recommended that you have some

programming experience using any of the object-oriented languages such as C++,

Pascal, or Java.

In this tutorial, you will learn how to write and compile C# programs; understand C#

syntaxes, data types, control flow, classes and their members, interfaces, arrays, and

exception handling. After completing this tutorial, you should have a clear understanding

of the purpose of C# language, its usages, and how to write C# programs.

The current version of C# language is 3.0. This tutorial covers all versions of C#

language including 1.0, 2.0, and 3.0. The features added in versions 2.0 and 3.0 are

covered in the Advanced Topics of this tutorial.

Table of Contents

1. Introduction

2. C# Language Features

3. C# Editors & IDEs

4. C# Components

5. Types

6. Attributes

7. Variables

8. Constants

9. Expressions and Operators

10. Control Statements

11. Classes

12. Events

13. Indexers

14. Inheritance

15. C# 2.0 Features

16. C# 3.0 Features

1. Introduction

Microsoft developed C#, a new programming language based on the C and C++

languages. Microsoft describes C# in this way: ”C# is a simple, modern, object–oriented,

and typesafe programming language derived from C and C++. C# (pronounced c sharp)

is firmly planted in the C and C++ family tree of languages and will immediately be

familiar to C and C++ programmers. C# aims to combine the high productivity of visual

basic and raw power of C++.”

Anders Hejlsberg, the principal architect of C#, is known for his work with Borland on

Turbo Pascal and Delphi (based on object–oriented Pascal). After leaving Borland,

Hejlsberg worked at Microsoft on Visual J++.

Some aspects of C# will be familiar to those, who have programmed in C, C++, or Java.

C# incorporates the Smalltalk concept, which means everything is an object. In other

words, all types in C# are objects. C# properties are similar to Visual Basic language

properties. The Rapid Application Development (RAD) goal in C# is assisted by C#’s use

of concepts and keyword, such as class, structure, statement, operator, and enumeration.

The language also utilizes the concepts contained in the Component Object Model (COM)

architecture.

Unlike Visual Basic or Delphi, Events is a type in C# and can belong to an object.

Members of a class object can have variables, methods, properties, attributes, and

events. Attributes are another nice feature of C# language.

NOTE: C# is a case sensitive language.

2. C# Language Features

C# was developed as a language that would combine the best features of previously

existing Web and Windows programming languages. Many of the features in C# language

are preexisted in various languages such as C++, Java, Pascal, and Visual Basic. Here is

a list of some of the primary characteristics of C# language.

 Modern and Object Oriented

 Simple and Flexible

 Typesafety

 Automatic Memory Management

 Versioning Control

 Cross Platform Interoperability

 Advanced features introduced in C# 2.0 and 3.0

a. Modern and Object Oriented

A modern language is one that provides latest features and tools for developing scalable,

reliable, and robust industry–standard applications. C# is a modern language. The current

trend in programming is Web development, and C# is the best language for developing

web application and components for the Microsoft .NET platform.

As mentioned, C# is an object–oriented language. It supports all the basic object oriented

language features: encapsulation, polymorphism, and inheritance.

b. Simple and Flexible

C# is as simple to use as Visual Basic, in that everything in C# represented as an object.

All data type and components in C# are objects. C++ programmers are sometimes

confused when choosing different access operators to process object. With C# you use a

dot (.) operator to access the object members.

Programmers use C# to develop both managed and unmanaged code. Managed code is

code managed through the CLR module. It handles garbage collection, type-safety, and

platform-independence behavior. Unmanaged code, on the other hand is code run outside

the CLR, such as an ActiveX control.

C# provides the flexibility of using native Win 32 application programming interface (API)

and unmanaged code through COM+. C# enables you to declare unsafe classes and

members having pointers, COM interfaces, structures, and native APIs. Although the

class and its member are not typesafe, they still can be executed from managed code

using COM+. Using the N/ Direct features of C# and COM+, you can use the C language

API. With the help of the COM+ run-time and the COM+ Common Language Specification

(CLS), you can access the COM and COM+ API. Using the Sysimport attribute, you can

even access native Windows API (DLLs) in C#. See the “Attributes” section of this article

for more about attributes.

c. Typesafety

C# is a typesafe language. All variables and classes (including primitive type, such as

integer, Boolean, and float) in C# are a type, and all type are derived from the object the

object type.

The object type provides basic functionality, such as string conversion, and information

about a type. (See “The Object Class” section of this article for more about the object

type.) C# doesn’t support unsafe type assignments. In other words, assigning a float

variable directly to a Boolean variable is not permitted. If you assign a float type to a

Boolean type, the compiler generates an error.

C# supports two kinds of type: value type and reference types. All value types are

initialized with a value of zero, and all reference types are automatically initialized with a

null value (local variable need to be initialized explicitly or the compiler throw a

warning). The “Type in C#” section of this article will discuss types in more detail.

d. Automatic Memory Management and Garbage Collection

Automatic memory management and garbage collection are two important features of C#.

With C#, you don’t need to allocate memory or release it. The garbage collection feature

ensures that unused references are deleted and cleaned up in memory. You use the new

operator to create type object, but you never need to call a delete operator to destroy

the object. If the garbage collector finds any unreferenced object hanging around in

memory, it removes it for you. Although you can’t call delete directly on an object, you

have way to get garbage collector to destroy objects.

e. Versioning Control and Scalable

If you’re a Microsoft Window developer, you should be familiar with the expression DLL

hell, which refers to having multiple versions of the same Dynamic Link Library (DLL)

and not having backward and forward compatibility. For example, you can’t run programs

written in Microsoft Foundation class (MFC) version4.0 on systems with MFC version 3.0

or earlier. This is one of the biggest challengers for a developer, especially if you’re

developing MFC applications.

C# model is based on namespaces. All interfaces and classes must be bundled under a

namespace. A namespace has classes as its members. You can access all the members or

just a single member of a namespace. Two separate namespaces can have the same class

as their member.

C# also supports binary compatibility with a base class. Adding a new method to a base

class won’t cause any problems in your existing application.

The .NET assemblies contain metadata called manifest. A manifest stores information

about an assembly such as its version, locale, and signature. There is no concept of

registry entries for handing compatibility. In .NET, you simple put your assembly into one

global folder if you want to make it sharable; otherwise, you put it in a private folder for

private use only.

f. Language and Cross Platform Interoperability

C#, as with all Microsoft .NET supported language, shares a common .NET run-time

library. The language compiler generates intermediate language (IL) code, which a .NET

supported compiler can read with the help of the CLR. Therefore, you can use a C#

assembly in VB.NET without any problem, and vice versa.

With the full support of COM+ and .NET framework services, C# has the ability to run on

cross-platform systems. The Web-based applications created from .NET use an

Extensible Markup Language (XML) model, which can run on multiple platforms.

g. Advanced Features introduced in C# 2.0 and 3.0

These features are discussed in more details in C# 2.0 Features and C# 3.0 Features

sections of this tutorial.

The following features were introduced in C# version 2.0.

 Partial classes

 Generics

 Nullable Types

 Anonymous Methods

 Iterators

 Property Access Accessibility Modifiers

The following features were introduced in C# version 3.0.

 Extension Methods

 Implicit Typed Local Variables

 Object and Collection Initializers

 Query Expressions

 Lambda Expressions

3. C# Editors and IDEs

Before starting your first C# application, you should take a look at the C# editors

available for creating applications. Visual Studio .NET (VS.NET) Integrated Development

Environment (IDE) is currently the best tool for developing C# applications. Installing VS

.NET also installs the C# command-line compiler that comes with the .NET Software

Development Kit (SDK).

If you don’t have VS.NET, you can install the C# command-line compiler by installing the

.NET SDK. After installing the .NET SDK, you can use any C# editor.

Visual Studio 2005 Express is a lighter version of Visual Studio that is free to download.
You can also download Visual C# 2005 Express version for free. To download these
Express versions, go to MSDN website, select Downloads tab, and then select Visual
Studio related link.

Tip: There are many C# editors available- some are even free. Many of the editors that

use the C# command-line compiler are provided with the .NET SDK. Visit the C#

Corner’s tools section (http://www.c-sharpcorner.com/tools.asp) for a list of available C#

editor

If you can’t get one of these editors, you can use a text editor, such as Notepad or Word

pad. In the next sections, you’ll learn how to write a windows forms application in

notepad, and then you’ll look at the VS .NET IDE.

4. “Hello, C# Word!”

Let’s write our first simple “Hello, World!” program. The program will write output on

your console saying, “Hello, C# word!”

Before starting with the C# programming, however you must install the C# compiler. The

C# command-line compiler, csc.exe, comes with Microsoft’s .NET SDK. The .NET SDK

http://www.c-sharpcorner.com/tools.asp

supports the Windows 98, Windows ME, Windows NT 4.0 and Windows 2000 and later

platforms.

After installing the compiler, type the code for the “HELLO, C# World!” program in any

C# editor, which is shown in Listing 1. Then save the file as first.cs.

Listing 1. “Hello, C# world!” code

using System;

class Hello

{

 static void Main()

 {

 Console.WriteLine("Hello, C# world!");

 }

}

You can compile C# code from the command line using this syntax:

csc C:\\temp\first.cs

Make sure the path of your .cs file is correct and that the csc executable is included in

your path. Also make sure that path of C# Compiler (csc.exe) is correct. After compiling

your code, the C# compiler creates an .exe file called first.exe under the current

directory. Now you can execute the .exe from window explorer or from the command

line. Figure 1 shows the output.

Figure 1. “Hello, C# World!” program output

Did you see ”Hello, C# world!” on your console?

Yes? Congratulations!!! You’re now officially a C# programmer.

No? You may want to check the path of your file first.cs and the path of the compiler

csc.exe.

You have now written your first few lines of C# code. But what does each line of your

program means? I’ll describe the various components of your “Hello, C# world!” program.

The first line of your program is this:

using System;

The .NET framework class library is referenced in namespaces. The System namespace

contains the Console class, which reads from or writes to the console.

The class keyword defines a new class that is followed by a class name, as seen in the

second line of the “Hello, C# World!” code listing:

class Hello

{

 ...

}

The next line of code is the static void Main() function:

static void Main() {

Console.WriteLine ("Hello, C# World!");

}

}

In C#, every application must have a static Main() or int Main() entry point. The

concept is similar to that of the Main() function of C++. This means, this is what a

compiler will be looking for to start the application and whatever code is written in this

method will be executed before any thing else.

The Console class is defined in the System namespace. You can access its class

members by referencing them directly. Writeline(), A method of the Console class, writes

a string and a line terminator to the console.

5. C# Components

Now that you’ve finished your first C# program, it’s time to talk about the intricacies of

the C# language. In this section, I’ll discuss the C# syntax and components and how to

use them.

Namespace and Assemblies

The first line of the “Hello, C# World!” program was this:

using System;

This line adds a reference to the System namespace to the program. After adding a

reference to a namespace, you can access any member of the namespace. As mentioned,

in .NET library references documentation, each class belongs to a namespace. But what

exactly is a namespace?

To define .NET classes in a category so they’d be easy to recognize, Microsoft used the

C++ class-packaging concept know as namespaces. A namespace is simply a grouping of

related classes. The root of all namespaces is the System namespace. If you see

namespaces in the .NET library, each class is defined in a group of similar category. For

example, The System.Data namespace only possesses data-related classes, and

System.Multithreading contains only multithreading classes.

When you create a new application using visual C#, you see that each application is

defined as a namespace and that all classes belong to that namespace. You can access

these classes from other application by referencing their namespaces.

 For example, you can create a new namespace MyOtherNamespace with a method Hello

defined in it. The Hello method writes “Hello, C# World!” to the console. Listing2 shows

the namespace.

Listing 2 Namespace wrapper for the hello class

// Called namespace

namespace MyOtherNamespace

{

class MyOtherClass

{

public void Hello()

{

Console.WriteLine ("Hello, C# World!");

}

}

}

In listing 3, you’ll see how to reference this namespace and call MyOtherClass’s Hello

method from the main program.

In listing 2, the MyOtherClass and its members can be accessed from other namespaces

by either placing the statement using MyOtherNamespace before the class declaration or

by referring to the class my other namespace before the class declaration or by referring

to the class as MyOtherNamespace.Hello, as shown in listing 3 and listing 4.

Listing 3. Calling my other Namespace Name space members

using System;

using MyOtherNamespace;

 // Caller namespace

namespace HelloWorldNamespace

{

 class Hello

 {

 static void Main()

 {

 MyOtherClass cls = new MyOtherClass();

 cls.Hello();

 }

 }

}

// Called namespace

namespace MyOtherNamespace

{

 class MyOtherClass

 {

 public void Hello()

 {

 Console.WriteLine("Hello, C# World!");

 }

 }

}

As you have seen in listing 3, you include a namespace by adding the using directly. You

can also reference a namespace direct without the using directive. Listing 4 shows you

how to use MyOtherClass of MyOtherNamespace.

Listing 4. Calling the HelloWorld namespace member from the MyOtherNamespace

// Caller namespace

namespace HelloWorldNamespace

{

class Hello

{

static void Main()

{

 MyOtherNamespace.MyOtherClass cls =

 new MyOtherNamespace.MyOtherClass();

 cls.Hello();

}

}

}

Standard Input and Output Streams

The System.Console class provides the capability to read streams from and write

streams to the System console. It also defines functionality for error streams. The Read

operation reads data from the console to the standard input stream, and the Write

operation writes data to the standard output stream. The standard error stream is

responsible for storing error data. These streams are the automatically associated with

the system console.

The error, in, and out properties of the Console class represents standard error output,

standard input and standard output streams. In the standard output stream, the Read

method reads the next character, and the ReadLine method reads the next line. The

Write and WriteLine methods write the data to the standard output stream. Table 1

describes some of the console class methods.

Table 1. The System.Console Class methods

METHOD DESCRIPTION EXAMPLE

Read Reads a single

character

int i = Console.Read();

ReadLline Reads a line string str = Console.ReadLine();

Write Writes a line Console.Write ("Write: 1");

WriteLine Writes a line followed

by a line terminator

Console.WriteLine("Test Output Data with

Line");

Listing 5 shows you how to use the Console class and its members

Listing 5. Console class example

using System;

namespace ConsoleSamp

{

class Classs1

{

static void Main(string[] args)

{

 Console.Write("Standard I/O Sample");

 Console.WriteLine("");

 Console.WriteLine ("= = = = = = = = ");

 Console.WriteLine ("Enter your name . . .");

 string name = Console.ReadLine();

 Console.WriteLine("Output: Your name is : "+ name);

}

}

}

Figure2 shows the output of listing 5.

Figure 2. The console class methods output

The Object Class

As described, in the .NET framework, all types are represented as objects and are

derived from the Object class. The Object class defines five methods: Equals,

ReferenceEquals GetHashCode, GetType and ToString. Table 2 describes these methods,

which are available to all types in the .NET library.

Table 2. Object class methods

METHOD DESCRIPTION

GetType Return type of the object.

Equals Compares two object instances. Returns true if they’re

Equal; otherwise false.

ReferenceEquals Compares two object instances. Returns true if both are

Same instance; otherwise false.

ToString Converts an instance to a string type.

GetHashCode Return hash code for an object.

The following sections discuss the object class methods in more detail.

The GetType method

You can use the Type class to retrieve type information from the object. The GetType

method of an object return a type object, which you can use to get information on an

object such as its name, namespace, base type, and so on. Listing 6 retrieves the

information of objects. In Listing 6, you get the type of the Object and System.String

classes.

Listing 6 GetType example

using System;

class TypeClass

{

static void Main(string [] args)

{

//create object of type object and string

Object cls1 = new Object ();

System.String cls2 = "Test string";

// Call Get Type to return the type

Type type1 = cls1.GetType();

Type type2 =cls2.GetType();

// Object class output

Console.WriteLine(type1.BaseType);

Console.WriteLine(type1.Name);

Console.WriteLine(type1.FullName);

Console.WriteLine(type1.Namespace);

// String output

Console.WriteLine(type2.BaseType);

Console.WriteLine(type2.Name);

Console.WriteLine(type2.FullName);

Console.WriteLine(type2.Namespace);

}

}

Figure 3 shows the output of listing 6.

Figure 3. Output of listing

The Equals and ReferenceEqual Methods

The Equals method in the Object class can compare two objects. The ReferenceEqual

method can compare the two objects’ instances. For example:

Console.WriteLine(Object.Equals(cls1, cls2));

Console.WriteLine(Object.Equals(str1, str2));

See listing 7 get type, equal, and reference Equals

Listing 7. Get Type, Equal, and ReferenceEquals

using System;

namespace TypesSamp

{

//define class 1

public class Class1: object

{

private void Method1()

{

 Console.WriteLine("1 method");

}

}

// Define class 2

public class Class2: Class1

{

private void Method2()

{

 Console.WriteLine("2 method");

}

}

class TypeClass

{

static void Main(string [] args)

{

Class1 cls1 = new Class1();

Class2 cls2 = new Class2();

Console.WriteLine ("= = = = = = = = = = ");

Console.WriteLine ("Type Information");

Console.WriteLine ("= = = = = = = = = =");

// Getting type information

Type type1 =cls1.GetType();

Type type2 = cls2.GetType();

Console.WriteLine(type1.BaseType);

Console.WriteLine(type1.Name);

Console.WriteLine(type1.FullName);

Console.WriteLine(type1.Namespace);

// Comparing two objects

string str1 = "Test";

string str2 = "Test";

Console.WriteLine(" = = = = = = = = = = = ");

Console.WriteLine("comparison of two objects");

Console.WriteLine(object.Equals(cls1, cls2));

Console.WriteLine(object.Equals(str1, str2));

}

}

}

Figure 4 shows the output of listing 7.

Figure 4 get type and compare objects code output

The ToString Method and String Conversion

The ToString method of the Object class converts a type to a string type.

Listing 8 shows an example of the ToString method.

Listing 8. ToString method example

using System;

namespace ToStringSamp

{

class Test

{

static void Main(string [] args)

{

 int num1 =8;

 float num2 =162.034f;

 Console.WriteLine(num1.ToString());

 Console.WriteLine(num2.ToString());

}

 }

}

The GetHashCode method

A hashtable (also commonly known as a map or dictionary) is a data structure that stores

one or more key- value pairs of data. Hashtables are useful when you want fast access

to a list of data through a key (which can be a number, letter, string, or any object). In

.NET the HashTable class represents a hashtable, which is implemented based on a

hashing algorithm. This class also provides methods and constructors to define the size

of the hash table. You can use the Add and Remove methods to add and remove items

from a hashtable. The Count property of the HashTable class returns the number of

items in a hashtable.

The GetHashCode method returns the hash code of an object. To return a hash code for

a type, you must override the GetHashCode method. An integer value is returned, which

represents whether an object is available in a hashtable.

Two other useful methods of the object class are MemberWiseClone and Finalize

methods. The MemberWiseClone method creates a shallow copy of an object, which can

be used as a clone of an object. The Finalize method acts as a destructor and can clean

up the resources before the garbage collector calls the object. You need to override this

method and write your own code to clean up the resources. The garbage collector

automatically calls the Finalize method if an object is no longer in use.

6. Types

As mentioned earlier in the article, C# supports value types and reference types. Value

types include simple data type such as int, char, and bool. Reference types include

object, class, interface, and delegate.

A value type contains the actual value of the object. That means the actual data is stored

in the variable of a value type, whereas a reference type variable contains the reference

to the actual data.

Value Types

Value types reference the actual data and declared by using their default constructors.

The default constructor of these types returns a zero- initialized instance of the variable.

The value types can further be categorized instance of the variable. The value types can

further be categorized into many subcategories, described in the following sections.

Simple Types

Simple types include basic data types such as int, char, and bool. These types have a

reserved keyword corresponding to one class of a CLS type defined in the System class.

For example, the keyword int aliases the System.Int32 type, and the keyword long

aliases the System.Int64 type. Table 3 describes simple types.

Table 3 simple types

C# TYPE

ALIAS

CLS

TYPE

SIZE

BITS

SUFFIX DESCRIPTION RANGE

sbyte Sbyte 8 N/a Singed byte -128 to 127

byte Byte 8 N/a Unsigned

byte

0 to 255

short Int16 16 N/a Short

integer

-32,768 to 32,767

ushort unit16 16 N/a Unsigned

short

integer

0 to 65,535

int Int32 32 N/a Integer -2,147,483,648 to

2,17483,648

uint uint32 32 U Unsigned

integer

0 to 4,294,967,295

long Int64 64 L Long integer -9223372036854775808

to 9223372036854775808

ulong uint64 64 N/a Unsigned

long integer

0 to

18,446,744,073,709,551

,615

char char 16 N/a Unicode

character

any valid character,

e.g., a,*, \x0058

(hex), or\u0058

(Unicode)

float single 32 F Floating

point

integer

double double 64 D Double

floating

point

integer

bool boolean 1 N/a Logical

true/false

value

True/false

decimal decimal 128 M Used for

financial

and monetary

calculations

One feature of simple types is that you can assign single direct values to these types.

Listing 9 shows some assignment examples.

Listing 9. Simple type example

using System;

namespace ToStringSamp

{

class Test

{

static void Main(string[] args)

{

int num1 =12;

float num2 =3.05f;

double num3 = 3.5;

bool bl = true;

Console.WriteLine(num1.ToString());

Console.WriteLine(num2.ToString());

Console.WriteLine(num3.ToString());

Console.WriteLine(bl.ToString());

}

}

}

Struct Type

A struct type, or structure type, can declare constructors, constants, fields, methods,

properties, indexers, operators, and nested types. Structure types are similar to classes,

but they’re lightweight objects with no inheritance mechanism.

However, all structures inherit from the Object class.

In listing 10, your struct CarRec uses a record for a car with three members: name,

model, and year.

Listing 10. a struct type example

using System;

struct CarRec

{

public string Name;

public string Model;

public int Year;

}

class TestStructureType

{

public static void Main ()

{

CarRec rec;

rec.Name ="Honda";

rec.Model ="Accord";

rec.Year = 1999;

Console.WriteLine("Car Name: " +rec.Name);

Console.WriteLine("Car Modal: " +rec.Model);

Console.WriteLine("Car: "+rec.Year);

}

}

Figure 5 shows the output of listing 10.

Figure 5. Output of listing 10

Enum data types

The enum data types are useful when you need to represent a set of multiple values. A

good example of an enumeration is a list of colors:

enum ColorEnum {black, red, green};

Enum types are limited to long, int, short and byte.

This code declares an enum ColorEnum with members black, red, and green:

//black is 0, red is 1, green is 2.

enum ColorEnum{black, red, green};

You can also set your associated value to an e num type such as:

enum ColorEnum {black =0, red =1, green =2};

By default, enum associated value starts with 0 and increases by 1 for the next defined

member. If you assign your value, the default value of the next e num type member will

be the value of current member plus 1. For example, in this code the value of green is 7;

enum ColorEnum {black =0, red =6, green };

Reference Types

A reference type is a reference to an instance type. The main reference types are class,

array, interface, delegate, and event. A null value is assigned to a reference type by

default. A type assigned to a null value means the absence of an instance of that type.

Class Type

A class type defines a data structure that can have members in the form of methods,

properties, indexers, events, constructors, operators, and delegates. The class keyword

is used to create a class type. You can add methods, properties, indexers, delegates, and

events to the class. Listing 11 shows an properties, indexers, delegates, and events to

the class. Listing 11 shows an example of a class type.

Listing 11 Class Type example

// Define Class 1

public class class1:Object

{

private void Method1()

{

Console.WriteLine("1 method");

}

}

The new keyword creates access to the class type. After creating an instance, you can

use the dot (.) operator to access its members, as shows here:

Class1 cls1 = new class1();

cls1.Method1();

I’ll return to the discussion of classes later in this article.

Interface Type

An interface type is an abstract base class, which is a skeleton of a class and doesn’t

implement the members that it defines. Only the derived class of an interface can

implement the members of the interface. Interfaces can contain methods, properties,

events, and indexers.

In listing 12 MyInterface is an interface that defines the method TestMethod.MyClass is

derived from MyInterface, and you implement the MyMethod method in MyClass.

Listing 12. The interface type example

using System;

interface MyInterface

{

 void TestMethod();

}

class MyClass:MyInterface

{

public static void Main()

{

MyClass cls=new MyClass();

cls.TestMethod();

}

public void TestMethod()

{

Console.WriteLine("Test Method");

}

}

A class can also implement multiple interfaces. Listing 13 defines two interfaces,

MyInterface and MyInterface2.MyClass is inherited from these interfaces. You must

implement these interfaces in the inherited class. If you don’t implement an interface in

the derived class, the complier gives an error message.

For example, if you don’t implement the method test method TestMethod2 of

MyInterface2 in Myclass, the compiler returns this message: “Myclass does not

implement the interface member ‘MyInterface2. TestMethod2 (int, int)’.“

Listing 13. Multiple interfaces

using System;

interface MyInterface

{

 void TestMethod();

}

interface MyInterface2

{

 int TestMethod2(int a, int b);

}

class MyClass : MyInterface, MyInterface2

{

 public static void main()

 {

 int num1 = 23;

 int num2 = 6;

 MyClass cls = new MyClass();

 cls.TestMethod();

 int tot = cls.TestMethod2(num1, num2);

 Console.WriteLine(tot.ToString());

 }

 public void TestMethod()

 {

 Console.WriteLine("test method");

 }

 public int TestMethod2(int a, int b)

 {

 return a + b;

 }

}

Delegates Types

Delegate types are mainly are used with the class events. A delegate type encapsulates a

method with a certain signature, called a callable entity. Delegates are the typesafe and

secure version of function pointers (callback functionality).

Delegate instances are not aware of the methods they encapsulate; they’re aware only

and return type.

There are three steps in defining and using a delegate: declaration syntax. For example,

this code:

delegate void MyDelegate():

Declares a delegate named MyDelegate that no arguments and returns void.

The next step is to create an instance of delegate and call it:

MyDelegate del =new MyDelegate(TestMethod);

del();

Listing 14 shows an example of delegate.

Listing 14. An example of delegate.

delegate void MyDelegate();

class Test

{

static void TestMethod()

{

System.Console.WriteLine("Test Method called");

}

static void Main()

{

MyDelegate del = new MyDelegate(TestMethod);

del();

}

}

Event Types

The event keyword defines an event. An eventype enables an object or class to provide

notification of an event from the system. An instance of a delegate type encapsulates the

callable entities. The EventHandler class defines a delegate definition. For example:

public delegate void EventHandler(object sender, System.Event Args e);

public event EventHandler Click;

...........

I’ll discuss events in more detail in the “Class Members” section of this article.

Array Types

An array type is a sequential set of any of the other types. Arrays can be either single-

or multidimensional. Both rectangular and jagged arrays are supported a jagged array has

elements that don’t necessarily have the same length. A rectangular array is

multidimensional, and all of its subarrays have the same length. With arrays, all of the

elements must be of the same base type. In C#, the lower index of an array starts with 0,

and the upper index is number of item minus 1.

You can initialize array item either during the creation of an array or later by referencing

array item, as shown here:

int[] nums = new int[5];

int[0] = 1;

int[1] = 2;

int[2] = 3;

int[3] = 4;

int[4] = 5;

Or here

int[] nums = new int {1,2,3,4,5,};

Listing 15 shows an example of single- dimensional arrays.

Listing 15. Single dimensional array example

class Test

{

 static void Main()

 {

 //array of integers

 int[] nums = new int[5];

 // Array of strings

 string[] names = new string[2];

 for(int i =0; i< nums.Length; i++)

 nums[i] = i+2;

 names[0] = "Mahesh";

 names[1] = "Chand";

for (int i = 0; i< nums.Length; i++)

System.Console.WriteLine ("num[{0}] = {1}", i, nums[i]);

System.Console.WriteLine

(names[0].ToString() + " " + names[1].ToString());

}

}

The following is an example is an example of multiple, rectangular, and jagged arrays:

char[] arr1 =new char[] {‘a‘, ‘b‘, ‘c’};

int[,] arrr2 = new int[,] {{2,4}, {3, 5}};

//rectangular array declaration

int [, ,]arr3= new int[2,4,6];

// also rectangular

int[][]jarr = new int[3][];

//jagged array declaration

jarr[0] = new int[] {1,2,3};

jarr[1] = new int[] {1,2,3,4,5,6};

jarr[2] = new int[] {1,2,3,4,5,6,7,8,9};

Sorting Searching, and Copying Arrays

The array class defines functionalities for creating, manipulating, searching, shorting, and

copying arrays. Table4 lists and describes some of the array class properties.

Table 4. The array class properties

PROPERTY DESRIPITION

Length Number of items in an array

Rank Number of dimensions in an array

IsFixedLength Indicates if an array is of fixed length

IsReadOnly Indicates if an array is read-only

Table 5 describes some of the array Class methods.

Table 5. The array class methods

METHOD DESCRIPTION

BinarySearch Searches for an element using Binary search algorithm

Clear Removes all elements of an array and set reference to

null

Copy Copies a section of one array to another

CreateInstance Initializes a new instance of an array

Reverse Reverses the order of array elements

Sort Sorts the elements of an array

Clone Creates a shallow copy of an array

CopyTo Copies all elements from 1 D array to another

GetLength Returns number of items in an array

GetValue Gets a value at a specified location

SetValue Sets a value at a specified location

The Copy method copies one-array section to another array section. However, this

method only works for single-dimensional array. Listing 16 shows a sample of coping

array items from one array to another.

Listing 16. Copying array sample

using System;

public class ArraySample

{

 public static void Main()

 {

 // Create and initialize a new arrays

 int[] intArr = new int[5] {1,2,3,4,5};

 Object[] objArr = new Object[5] {10,20,30,40,50};

 foreach (int i in intArr)

 {

 Console.Write(i);

 Console.Write(",");

 }

 Console.WriteLine();

 foreach (Object i in objArr)

 {

 Console.Write (i);

 Console.Write (",");

 }

 Console.WriteLine();

 // Copy one first 3 elements of intArr to objArr

 Array.Copy(intArr, objArr,3);

 Console.WriteLine("After coping");

 foreach (int i in intArr)

 {

 Console.Write(i);

 Console.Write(" , ");

 }

 Console.WriteLine();

 foreach (Object i in objArr)

 {

 Console.Write(i);

 Console.Write(" ,");

 }

 Console.WriteLine();

 }

}

The Sort and Reverse methods of the array class are useful when you need to sort and

reverse array elements. Listing 17 shows how to sort and reverse arrays.

Listing 17. Reversing and sorting array elements

using System;

public class ArraySample

{

 public static void Main()

 {

 // Create and initialize a new array instance.

 Array strArr = Array.CreateInstance(typeof(string), 3);

 strArr.SetValue("Mahesh", 0);

 strArr.SetValue("chand", 1);

 strArr.SetValue("Test Array", 2);

 // Display the values of the array.

 Console.WriteLine("Initial Array values:");

 for (int i = strArr.GetLowerBound(0);

i <= strArr.GetUpperBound(0); i++)

 Console.WriteLine(strArr.GetValue(i));

 //sort the value of the array.

 Array.Sort(strArr);

 Console.WriteLine("After sorting:");

 for (int i = strArr.GetLowerBound(0);

i <= strArr.GetUpperBound(0); i++)

 Console.WriteLine(strArr.GetValue(i));

 // Reverse values of the array.

 Array.Reverse(strArr);

 for (int i = strArr.GetLowerBound(0); i <=

strArr.GetUpperBound(0); i++)

 Console.WriteLine(strArr.GetValue(i));

 }

}

Type Conversions

C# supports two kinds of type conversions: implicit conversions and explicit conversions.

Some of the predefined types define predefined conversions, such as converting from an

int type to a long type.

Implicit conversions are conversions in which one type can directly and safely are

converted to another type. Generally, small range type converts to large range type. As

an example, you’ll examine the process of converting from an int type to a long type. In

this conversion, there is no loss of data, as shown in Listing 18.

Listing 18. Conversion example

using System;

class ConversionSamp

{

 static void Main()

{

int num1 = 123;

long num2 = num1;

Console.WriteLine(num1.ToString());

Console.WriteLine(num2.ToString());

}

}

Casting performs explicit conversions. There may be a chance of data loss or even some

errors in explicit conversions. For example, converting a long value to an integer would

result in data loss.

This is an example of an explicit conversion:

long num1 = Int64.MaxValue;

int num2 =(int)num1;

Console.WriteLine(num1.ToString());

Console.WriteLine(num2.ToString());

The process of converting from a value type to a reference type is called boxing. Boxing

is an implicit conversion. Listing 19 shows an example of boxing.

Listing 19. Boxing example

using System;

class ConversionSamp

{

 static void Main()

 {

 int num1 = 123;

 Object obj = num1;

 Console.WriteLine(num1.ToString());

 Console.WriteLine(obj.ToString());

 }

}

The process of converting from a reference type to a value type is called unboxing.

Listing 20 shows an example of unboxing.

Listing 20. Unboxing example

using System;

class ConversionSamp

{

 static void Main()

 {

 Object obj = 123;

 int num1 = (int)obj;

 Console.WriteLine(num1.ToString());

 Console.WriteLine(obj.ToString());

 }

}

7. Attributes

Attributes enable the programmer to give certain declarative information to the elements

in their class. These elements include the class itself, the methods, the fields, and the

properties. You can choose to use some of the useful built-in attributes provided with the

.NET platform, or you can create your own. Attributes are specified in square brackets (

[. . .]) before the class element upon which they’re implemented. Table 6 shows some

useful attributes provided with .NET.

Table 6 Useful Built-in Attributes

NAME DESCRIPTION EXAMPLE

DllImport Imports a native DLL [DllImport(“winmm.dll”)]

Serializable Makes a class serializable [Serializable]

Conditional Includes/omits a method based

on condition

[Conditional(Diagnostic”)]

8. Variables

A variable represents a strong location. Each variable has a type that determines what

values can be stored in the variable. A variable must definitely be assigned before its

value can be obtained.

In C#, you declare a variable in this format:

[modifiers] datatype identifier;

In this case, the modifier is an access modifier. The “variable Modifiers” section will

discuss class member access modifiers. The data type refers to the type of value a

variable can store. The identifier is the name of variable.

The next two examples are declarations of variable where public is the modifier, int is

the data type, and num1 is the name. The second variable type is a local variable. A local

variable can’t have modifier because it sits inside a method and is always private to the

method. Here are the examples:

public int num1;

and:

int num1;

A value can be assigned to variable after it’s declared. You can also initialize a value

during a variable declaration. For example:

int num1 = new Int16();

num1 = 34;

int num2 = 123;

Variable Modifiers

Modifiers enable you to specify a number of features that you apply to your variable. You

apply a variable modifier when you declare a variable. Keep in mind that mo-differs can

be applied to fields not to local variables.

Note: A local variable only has scope within its defined block in the program.

A variable can have one or combination of more then one of the following types: internal,

new, private, public, protected, read only, and static.

Accessibility modifiers

Some of the modifiers discussed in previous sections can set the accessibility level of

variables. These are called accessibility modifiers (see table 7).

Table 7. Accessibility modifiers

MODIFIER DESCRIPTION

internal The variable can only accessed by the current program.

public The variable can be accessed from any where as a field.

protected The variable can only be accessed with the class in which

it’s defined and it’s derived class.

protected internal The variable can only be accessed from the current

program and the type derived from the current program.

private The variable can only be accessed within the type in which

it’s defined.

You’ll now examine access modifiers in an example. In listing 21, AccessCls is a class

accessed by the Main method. The Main method has access to num1 because it’s defined

as a public variable, but not to num2 because it’s a private variable.

Listing 21. Variable access modifiers.

using System;

class VarAccess

{

class AccessCls

{

public int num1 = 123;

int num2 = 54;

}

static void Main()

{

AccessCls cls = new AccessCls();

int num1 = 98;

num1 = cls.num1;

//int i = cls. Num2;

Console.WriteLine(num1.ToString());

}

}

When you access class members, the num2 variable is not available in the list of its

members. See figure 6.

Figure 6. Available members of AccessCls

If you try access num2 from the main program, the compiler gives the error shown in

figure 7

Figure 7. Error given when trying to access a private member of class

Static and Read-Only Variables

By default, a field is an instance field. That means a new copy of variable is creates for

each instance of the class to which it belongs. There are some cases where you want the

variable to be shared by ever instance of the class, and it’s in such cases that static

fields are useful. By defining the static keyword, you can restrict a field to create only

one instance of the variable of a class and share it with all other class instance of the

same type. In other words, if you change the value of a static variable in a class, all

instance at the class level rather then the instance level. You can use the static modifier

alongside other modifiers.

For example:

public static int num2 = 34;

You can modify the value of a variable once it’s initialized, but there are some cases

where you don’t want to change the value of the variable after it’s assigned during

initialization. In these cases, you can the read –only modifier to prevent modification.

9. Constants

Constants are similar to read-only fields. You can’t change a constant value once it’s

assigned. The const keyword precedes the field to define it as a constant. Assigning

value to a constant would give a compilation error. For example:

const int num3 = 34;

num3 = 54;

// Compilation error: the left-hand side of an assignment must

// be a variable, property or indexer

Although constant are similar to read-only fields, some differences exist. You can also

declare local variables to be constants. Constants are always static, even though you

don’t use the static keyword explicitly, so they’re shared by all instances of the class.

10. Expressions and Operators

An expression is a sequence of operators and operands that specify some sort of

computation. The operators indicate an operation to be applied to one or two operands.

For example, the operators + and - indicate adding and subtracting operands. For

example, the operator + and- indicate adding and subtracting one object from another,

respectively. Listing 22 is a simple example of operators and operands.

Listing 22. The relationship between operators and operands

using System;

class Test

{

 static void Main()

 {

 int num1 = 123;

 int num2 = 34;

 int res = num1 + num2;

 Console.WriteLine(res.ToString());

 res = -(res);

 Console. WriteLine(res.ToString());

 }

}

This example applies an operator on two objects, num1 and num2:

int res = num1 + num2;

There are three types of operators:

 The unary operators take one operand and use either a prefix notation (Such as –x)

or postfix notation (such as x++).

 The binary operators take two operands and all use what is called infix notation,

where the operator appears between two objects (such as x + y).

 The ternary operator takes three operands and uses infix notation (such as c? x: y).

Only one ternary operator, ?:, exists.

Table 8 categorizes the operators. The table summarizes all operators in order of

precedence from highest to lowest.

Table 8. Operators in C#

OPERATOR CAREGORY OPERATORS

Primary x.y f(x) a[x] x++ x-- new typeof checked

unchecked

Unary + - ! ~ ++x --x (T)x

Multiplicative * / %

Additive + -

Shift << >>

Relational and type testing < > <= >= is as

Equality == !=

Logical AND &

Logical XOR ^

Logical OR |

Conditional AND &&

Conditional OR ||

Conditional ?:

Assignment = *= /= %= += -= <<= >>= &= ^= |=

The checked and unchecked operators

The checked and unchecked operators are two new features in C# for C++ developers.

These two operators force the CLR to handle stack overflow situations. The checked

operators enforces overflow through an exception if an overflow occurs. The unchecked

operator doesn’t throw an exception if an overflow occurs. Here the code throws an

exception in the case of the checked operator, whereas the unchecked part of the same

code won’t throw an exception:

checked

{

num1 += 5;

}

unchecked

{

num =+ 5;

}

The is operator

The is operator is useful when you need to check whether an object is compatible with a

type. For example:

string str = "Mahesh";

if (str is object)

{

Console.WriteLine(str +" is an object compatible");

}

The sizeof Operator

The sizeof operator determines the size of a type. This operator can only be used in an

unsafe context. By default, an unsafe context is false in VS.NET, so you’ll need to follow

the right- click on the project > properties > Build option and set allow unsafe code

blocks to use the unsafe block in your code. Then you’ll be able to compile the following

code:

unsafe

{

 Console.WriteLine(sizeof(int));

}

The typeof Operator

The typeof operator returns the type of a class or variable. It’s an alternative to

GetType, discussed earlier in the “Objects in C#” section of this article.

For example:

Type t = typeof(MyClass);

The GetType operator returns a Type Object, which can access the type name and other

type property information.

11. Control Statements

Control flow and program logic are of the most important parts of a programming

language’s dynamic behavior. In this section, I’ll cover control flow in C#. Most of the

condition and looping statements in C# comes from c and C++. Those who are familiar

with java will recognize most of them, as well.

The if . . .else Statement

The if . . .else statement is inherited from C and C++. The if . . .else statement is also

known as a conditional statement. For example:

if (condition)

statement

else

statement

The if. . .section of the statement or statement block is executed when the condition is

true; if it’s false, control goes to the else statement or statement block. You can have a

nested if . . .else statement with one of more else blocks.

You can also apply conditional or (||) and conditional and (&&) operators to combine

more then one condition. Listing 23 shows you how to use the if. . .else statement.

Listing 23. The if . . . else statement example

using System;

public class MyClass

{

 public static void Main()

 {

 int num1 = 6;

 int num2 = 23;

 int res = num1 + num2;

 if (res > 25)

 {

 res = res - 5;

 Console.WriteLine("Result is more then 25");

 }

 else

 {

 res = 25;

 Console.WriteLine("Result is less then 25");

 }

 bool b = true;

 if (res > 25 || b)

 Console.WriteLine("Res > 25 or b is true");

 else if ((res>25) && !b)

 Console.WriteLine("Res > 25 and b is false");

 else

 Console.WriteLine("else condition");

 }

}

The switch Statement

Like the if . . . statement, the switch statement is also a conditional statement. It

executes the case part if it matches with the switch value. If the switch value doesn’t

match the case value, the default option executes .The switch statement is similar to an if

. . . statement with multiple. . .else conditions, but it tends to be more readable. Note that

in C#, you can now switch on string, which is something C++ did not previously allow.

See listing 24 for an example of a switch statement.

Listing 24. The switch statement example

int i = 3;

switch(i)

{

case1:

Console.WriteLine("one");

break;

case2:

Console.WriteLine("two");

break;

case3:

Console.WriteLine("three");

break;

case4:

Console.WriteLine("four");

break;

case5:

Console.WriteLine("five");

break;

default:

Console.WriteLine("None of the about");

break;

}

The for loop Statement

The for loop statement is probably one of the widely used control statements for

performing iterations in a loop. It executes a statement in the loop until the given guard

condition is true. The for loop statement is a pretest loop, which means it first tests if a

condition is true and only executes if it is. You can use the ++ or – operators to provide

forward or backward looping. The following is an example of a for loop statement:

// Loop will execute 10 times from 0 to 9

for (int i=0; i<10; i++)

{

Console.WriteLine(i.ToString());

}

The while loop Statement

The while loop statement also falls in the conditional loop category. The while loop

statement executes unit the while condition is true. It’s also a pretest loop, which means

it first tests if a condition is true and only continues execution if it is in the example

shown here, the while loop statement executes until the value of i is less then 10;

int i = 0;

while (i<10)

{

Console.WriteLine(i.ToString());

i++;

}

The do . . . while loop Statement

The do . . . while loop statement is a post- test loop, which means it executes a

statement first and then checks if the condition is true. If the condition is true, the loop

continues until the condition is false. As the name says, “do something while something is

true.” This is an example of a do . . . while loop:

int i = 0;

do

{

Console.WriteLine(i.ToString());

i++;

} while (i<10);

The foreach loop statement

The foreach loop statement is new concept to C++ programmers but will be familiar to

veteran visual basic programmers. The foreach loop enables you to iterate over each

element of an array or each element of a collection. This is a simple example:

//foreach loop

string[] strArr = {"Mahesh", "Chand", "Test String"};

foreach (string str in strArr)

Console.WriteLine(str);

In this example, the loop will continue until the items in the array are finished. Many of

the collection examples in this article will use this loop.

The go to statement

The goto statement is used when you need to jump to a particular code segment. It’s

similar to the goto statement in visual basic or C++.

In the following code, if an item of array is found, the control goes to the level found and

skips all code before that.

Most programmers avoid using the goto statement, but you may find a rare need for it.

One such occasion is the use of fall-through on a switch statement. Fall- thought is the

ability for the control flow to fall from one case statement directly into another by

leaving out the break statement. In C#, fall-though in a switch statement is not allowed

as it was in C++. However, if you explicitly tell the switch statement to go to the next

label, it will perform a jump to the next case, essentially carrying out the same function

as a fall-through. Note that when using a go to in a case statement, you don’t have to

provide a break (in all other cases, a break statement is mandatory). in this is bill” and

“sometimes I’m called William” are displayed on the screen:

Console.WriteLine("What is your name? ");

 string name = Console.ReadLine();

 switch(name)

 {

 case "Bill":

 Console.WriteLine("My name is Bill.");

 goto case "William";

 case "William":

 Console.WriteLine("Sometimes I’m called William.");

 break;

 case "Anne":

 Console.WriteLine("My name is Anne. ");

 break;

 default:

 break;

}

The break statement

The break statement exits from a loop or a switch immediately. The break statement is

usually applicable when you need to release control of the loop after a certain condition

is met, or if you want to exit from the loop without executing the rest of the loop

structure. You use it in for, foreach, while, and do. . . while loop statements. The

following code shows the break statement. If condition j == 0 is true control will exit

from the loop:

for (int i=0; i<10; i++)

{

int j = i*i;

Console.WriteLine(i.ToString());

if (j == 9)

break;

Console.WriteLine(j.ToString());

}

The continue Statement

Similar to the break statement, the continue statement also works in for, foreach, while,

and do . . . while statements. The continue statement causes the loop to exit from the

current iteration and continue with the rest of the iterations in the loop. See the following

code for an example:

for (int i=0; i<10; i++)

{

int j = i*i;

Console.WriteLine("i is "+ i.ToString());

if (j == 9)

Continue;

Console.WriteLine("j is "+ j.ToString());

}

In this code snippet, when the condition j == 9 is true, the control exits from the current

iteration and moves to the next iteration.

Note: The break statement makes control exits the entire loop, but the continue

statement only skips the current iteration.

The return Statement

The return statement returns from a method before the end of that method is reached.

The return statement can either a value or not, depending on the method that calls it.

This is an example of a return statement that return nothing, and another where the

return statement returns an integer value:

public static void Main()

{

 int output = 9 + 6;

 if (output >= 12)

 return;

 Console.WriteLine ("Output less then 12");

}

public int Sum(int a, int b)

{

 return a + b;

}

12. Classes

You saw a class structure in the “Hello, C# World!” sample. In the C#, you define a class

by using the class keyword, just as you do in C++. Following the class keyword the

class name and curly brackets ({. . .}), as shown here:

class Hello

{

 static void Main()

 {

 Console.WriteLine("Hello, C# World!");

 }

}

Note: C# classes don’t end semicolon (;) as C++.

Once a class is defined, you can add class members to it. Class members can include

constants, fields, methods, properties, indexers, events, operators, instance constructors,

static constructors, destructors, and nested type declarations. Each class member has an

associated accessibility, which controls the scope of the member and defines whether

these members are accessible outside the class.

Class Members

Table 9 describes allowable class member elements.

Table 9. A class members

CLASS MEMBER INHERITANCE

Methods Similar to C++ functions. Methods implement some action that

can be performed by an object.

Properties Provide access to a class attribute (a field). Useful for

exposing fields in components.

Events Used to provide notification.

Constants Represents a constant value.

Fields Represents a variable of the class

Operators Used to define an expression (+, *,->, ++,[], and so on).

Instance

Constructors

Methods called during initialization of an object.

Static Constructors Called automatically.

Destructors Called when an object is being destroyed.

Indexers A new concept in C#. An indexer provider indexing on an

object. It allows you to treat a class as an array.

Types All local types used in a class.

Before examining these members in detail, you’ll look at the accessibility of these

members. Table 10 describes class member accessibility type and their scopes.

Table 10. Class member accessibility types and scopes

ACCESSIBLITY TYPE SCOPE

Public Member is accessible from other programs.

Protected Member is accessible by the containing and its

derived classes and types.

Internal Member is accessible only the current program.

Protected internal Member is accessible by the current program and the

class derived from the containing class.

Now you’ll look at class members in more detail.

Fields

A field member Represent a variable of a class. In this example, strClassName is a string

type public variable that can be accessed by the class instance:

class myClass

{

 public static string strClassName;

 public void SetClassName(string strName)

 {

 strClassName = strName;

 }

}

As noted earlier; you can define field members as read-only. This means the field can

only be assigned in the declaration or in the constructor of the class. See the following

code:

class myClass

{

 public static readonly string strClassName = "myClass";

 public void SetClassName(string strName)

 {

 strClassName = strName; // illegal assignment

 }

}

Note that the complier will throw an error because of an illegal assignment.

If the field is not static, you have to access fields from the class instance. It’s the same

idea as accessing a public variable in the C++ or structure in C. for example:

myClass cls = new MyClass();

string clsName = cls.strClassName;

Constants

A constant Member represents a constant value throughout the program. For example the

clsNodes is constant that has integer value 12. See the following code:

class myClass

{

 public const int clsNodes = 12;

}

The value of clsNodes will be 12 throughout the program and can’t be reassigned.

Instance and Static Constructors

Constructors in C# are defined in the same way as in C++. C# supports two types of

constructors: instance constructors and static constructors. Instance constructors are

called every time a class is initialized. Static constructors are executed only once. Static

constructors are for initialing the values of static variable. Listing 25 is an example of a

class with a static constructor.

Listing 25. Calling Static Constructors

using System;

class myClass

{

 static myClass()

 {

 Console.WriteLine("Initialieze clas ");

 }

 public static void foo()

 {

 Console.WriteLine(" foo");

 }

}

class Test

{

 static void Main()

 {

 myClass.foo();

//class myClass static constucter and then foo

 }

}

Constructors can be overloaded, as shown in listing 26.

Listing 26. Over loaded Constructors example

class myClass

{

public int iCounter, iTotal;

public myClass()

{

iCounter = 0;

iTotal = 0;

}

public myClass (int iCount, int iTot)

{

iCounter = iCount;

iTotal = iTot;

}

}

Listing 27. Calling class constructors

using System;

class myClass

{

 public int iCounter, iTotal;

 public myClass()

 {

 iCounter = 0;

 iTotal = 0;

 }

 public myClass(int iCount, int iTot)

 {

 iCounter = iCount;

 iTotal = iTot;

 }

}

class TestmyClass

{

 static void Main()

 {

 myClass cls = new myClass();

 myClass cls1 = new myClass(3, 4);

 Console.WriteLine(cls1.iCounter.ToString());

 Console.WriteLine(cls1.iTotal.ToString());

 }

}

Destructors

A destructor is called when it’s time to destroy the object. Destructors can’t take

parameters. See following code:

class myClass

{

 ~myClass()

 {

 // free resources

 }

}

TIP: It’s not mandatory; in fact it’s unadvisable to call destructors. They’re called

automatically by the CLR.

Methods

A method is a member that implements some functionality. It’s similar in appearance to

the methods found in C++ and java. A method can return a value have, a list of

parameters, and can be accessed through the class, whereas non - static. Static methods

are accessed through the class, whereas non-static methods are accessed through the

instance of the class. For example, listing 28 adds a method sum to the class myClass

and called this method from the Main method.

Listing 28. Class method example

using System;

class myClass

{

public int Sum(int a, int b)

{

int res = a + b;

return res;

}

}

class TestmyClass

{

static void Main()

{

myClass cls = new myClass();

int total = cls.Sum(5, 8);

Console.WriteLine(total.ToString());

}

}

Methods in C# support function overloading in a similar way as C++. If you have

programmed in C++, you’ll notice that C# methods are similar to C++ functions (and

almost mirror those methods found in java). So it’s not a bad idea to call function

overloading in C# method overloading. In listing 29, I over- overload the Sum method by

passing in different types of values and call each of the overloaded Sum methods from

the Main method.

Listing 29. Method overloading example

using System;

class myClass

{

 public int Sum(int a, int b)

 {

 int res = a + b;

 return res;

 }

 public float Sum(float a, float b)

 {

 float res = a + b;

 return res;

 }

 public long Sum(long a, long b)

 {

 long res = a + b;

 return res;

 }

 public long sum(long a, long b, long c)

 {

 long res = a + b + c;

 return res;

 }

 public long Sum(int[] a)

 {

 int res = 0;

 for (int i=0; i < a.Length; i++)

 {

 res += a[i];

 }

 return res;

 }

 public void Sum()

 {

 //return nothing

 }

}

class TestmyClass

{

 static void Main()

 {

 myClass cls = new myClass();

 int intTot = cls.Sum(5,8);

 Console.WriteLine("Return integer sum:"+

intTot.ToString());

 cls.Sum();

 long longTot = cls.Sum(Int64.MaxValue - 30, 8);

 Console.WriteLine("Return long sum:" + longTot.ToString());

 float floatTot = cls.Sum(Single.MaxValue-50, 8);

 Console.WriteLine("Return float sum:" +

floatTot.ToString());

 int[] myArray = new int[] {1,3,5,7,9};

 Console.WriteLine("Return sum of array = {0}",

 cls.Sum(myArray).ToString());

 }

}

The ref and out Parameters

Did you ever need your method to return more than one value? You may need to do this

occasionally, or you may need to use the same variables that you pass as an argument of

the method. When you pass a reference type, such as a class instance, you don’t have to

worry about getting a value in a separate variable because the type is already being

passed as a reference and will maintain the changes when it returns. A problem occurs

when you want the value to be returned in the value type. The ref and out parameters

help to do this with value types.

The out keyword defines an out type parameter. You Use the out keyword to pass a

parameter to a method. This example is passing an integer type variable as an out

parameter. You define a function with the out keyword as an argument with the variable

type:

myMethod(out int iVal1)

The out parameter can be used to return the values in the same variable passed as a

parameter of the method. Any changes made to the parameter will be reflected in the

variable. Listing 30 shows an example of the parameter.

Listing 30. Using the out parameter

using System;

public class myClass

{

 public static void ReturnData(out int iVal1, out int iVal2)

 {

 iVal1 = 2;

 iVal2 = 5;

 }

 public static void Main()

 {

 int iV1, iV2; // variable need not be initialized

 ReturnData(out iV1, out iV2);

 Console.WriteLine(iV1);

 Console.WriteLine(iV2);

 }

}

The ref keyword defines a ref type parameter. You pass a parameter to a method with

this keyword, as in listing 31. This example passes an integer type variable as a ref

parameter. This is a method definition:

myMethod(ref int iVal1)

You can use the ref parameter as a method input parameter and an output parameter. Any

changes made to the parameter will be reflected in the variable. See listing 31

Listing 31. A ref parameter example

using System;

public class myClass

{

public static void ReturnData(ref int iVal1, ref int iVal2, ref

int iVal3)

{

iVal1 +=2;

iVal2 = iVal2*iVal2;

iVal3 = iVal2 + iVal1;

}

public static void Main()

{

int iV1, iV2, iV3; // variable need not be initialized

iV1 = 3;

iV2 = 10;

iV3 = 1;

ReturnData(ref iV1, ref iV2, ref iV3);

Console.WriteLine(iV1);

Console.WriteLine(iV2);

Console.WriteLine(iV3);

}

}

In this method, ReturnData takes three values as input parameters, operates on the

passed data returns the result in the same variable.

Properties

Other than methods, another important set of members of a class is variables. A variable

is a type that stores some value. The property member of a class provides access to

variables. Some examples of Properties are font type, color, and visible properties.

Basically, Properties are fields. A field member can be accessed directly, but a property

member is always accessed through accessor and modifier methods called get and set,

respectively. If you have ever created active X controls in C++ or visual basic, or

created JavaBeans in java, you understand.

Note: Visual Basic programmers will note that Let is not available in C#

This is because all types are objects, so only the set access or is necessary.

In Listing 32 you create two properties of myClass:Age and MaleGender. Age is an

integer property, and MaleGender is a Boolean type property. As you can see in the

example, the get and set keywords are used to get and set property values. You’re

reading and writing property values from the Main method. Note that leaving out the set

method in a property makes the property read-only.

Listing 32. Class property member example

using System;

class myClass

{

 private bool bGender;

 private int intAge;

 // Gender property.

 public bool MaleGender

 {

 get

 {

 return bGender;

 }

 set

 {

 bGender = value;

 }

 }

 // Age property

 public int Age

 {

 get

 {

 return intAge;

 }

 set

 {

 intAge = value;

 }

 }

}

class TestmyClass

{

 static void Main()

 {

 myClass cls = new myClass();

 // set properties values

 cls.MaleGender = true;

 cls.Age = 25;

 if (cls.MaleGender)

 {

 Console.WriteLine("The Gender is Male");

 Console.WriteLine("Age is" + cls. Age.ToString());

 }

 }

}

Why use properties if you already have the field available? First of all, properties expose

fields in classes being used in components. They also provide a means for doing

necessary computation before or after accessing or modifying the private fields they’re

representing. For example, if you’re changing the color of a control in the set method,

you may also want to execute an invalidate method inside the set to repaint the screen.

13. Events

In C# events are a special type of delegate. An event member of a class provides

notifications from user or machine input.

A class defines an event by providing an event declaration, which is of type delegate.

The following line shows the definition of an event handler:

public delegate void EventHandler(object sender, System.EventArgs e);

The EventHandler takes two arguments: one of type object and the other of type

System.EvenArgs. A class implements the event handler using the event keyword. In the

following example, MyControl class implements the EventHandler:

public class MyControl

{

public event EvenHandler Click;

 public void Reset()

 {

 Click = null;

 }

}

You probably know that Windows is an event- driven operating system. In Windows

programming, the system sends messages to the massage queue for every action taken

by a user or the system, such as mouse–click, keyboard, touch screen, and timers. Even

if the operating system is doing nothing, it still sends an idle message to the message

queue after a certain interval of time.

Although you usually use events in GUI applications, you can also implement events in

console-based application. You can use them when you need to notify a state of an

action. You’ll have a look at an example of both types.

Listing 33 shows you how to implement events and event handlers in a console-based

application. The Boiler.cs class defines the BoilerStatus event. The SetBoilerReading

method sets the boiler temperature and pressure readings, and it writes the boiler status

on the console based on the temperature and pressure reading. Boiler.cs defines

BoilerStatus using the event keyword.

Listing 33. Boiler.cs

namespace BoilerEvent

{

 using System;

 public class Boiler

 {

 public delegate void EngineHandler(int temp);

 public static event EngineHandler BoilerStatus;

 public Boiler()

 {

 }

 public void SetBoilerReading(int temp, int pressure)

 {

 if (BoilerStatus != null)

 {

 if (temp >=50 && pressure >= 60)

 {

 BoilerStatus(temp);

 Console.WriteLine("Boiler Status: Temperature High");

 }

 else if (temp < 20 || pressure < 20)

 {

 BoilerStatus(temp);

 Console.WriteLine("Boiler status: Temperature Low");

 }

 else

 Console.WriteLine("Boiler status: Temperature Normal");

 }

 }

 }

}

Listing 34 is a caller class (main application) that calls the event through

BoilerEventSink. The BoilerTempoMeter method of the sink generates a warning

massage on the console only when the temperature of the boiler is zero.

Listing 34. Caller of Boiler.Cs

namespace BoilerEvent

{

 using System;

 public class Boiler

 {

 // Boiler class here

 }

 public class BoilerEventSink

 {

 public void BoilerTempoMeter(int temp)

 {

 if (temp <= 0)

 {

 Console.WriteLine("Alarm: Boiler is switched off");

 }

 }

 }

 // Event caller mailn application

 public class BoilerCallerApp

 {

 public static int Main(string [] args)

 {

 Boiler boiler1 = new Boiler();

 BoilerEventSink bsink = new BoilerEventSink();

 Boiler.BoilerStatus += new Boiler.EngineHandler(

bsink.BoilerTempoMeter);

 boiler1.SetBoilerReadings (55, 74);

 boiler1.SetBoilerReadings (0, 54);

 boiler1.SetBoilerReadings (8, 23);

 return 0;

 }

 }

}

As you can see in Listing 34, I created a Boiler object that calls the BoilerStatus handler,

which passes BoilerEventSink’s methods as an argument when calling Boiler.

EngineHandler is a delegate defined in the Boiler class. Then the program calls the

SetBoilerReading method with different temperature and pressure reading. When the

temperature is zero, the program displays a warning message on the console; otherwise,

the program displays message generated by the SetBoilerReading method.

Actually, it’s easier to understand events using windows application than it is using a

console-based application. To show you can an event sample in windows Forms, you’ll

create a Windows application. In this application, you’ll create a form and a button. The

button-click event executes and displays a message box.

Here, the button-click event executes button1_click method:

button1.Click += new System.EventHandler(button1_ Click);

and the button-click handler looks like the following:

private void button1_click(object sender, System.EventArgs e)

{

MassageBox.Show ("button is clicked");

}

Listing 35 shows a windows forms program with event sample. If you compile this

program, the out put looks like figure 8.

Listing 35. Event Handling example
using System;

using System.Windows.Forms;

using System.Drawing;

namespace NotePadWindowsForms

{

 public class NotePadWindowsForms: System.Windows.Forms.Form

 {

 private System.Windows.Forms.Button button1;

 public NotePadWindowsForms()

 {

 button1 = new System.Windows.Forms.Button();

 // Button control and its properties

 button1.Location = new System.Drawing.Point(8, 32);

 button1.Name ="button1";

 button1.Size = new System.Drawing.Size(104,32);

 button1.TabIndex = 0;

 button1.Text = "Click me";

 // Adding controls to the form

 Controls.AddRange(new System.Windows.Forms.Control[]

{button1});

button1.Click += new

System.EventHandler(button1_Click);

 }

// Button click handler

private void button1_Click(object sender, System.EventArgs e)

 {

 MessageBox.Show ("Button is clicked");

 }

 public static int Main()

 {

 Application.Run(new NotePadWindowsForms());

 return 0;

 }

 }

}

Figure 8 shows the output of listing 35 after clicking the Click me button.

Figure 8 output of listing35

14. Indexers

Indexers are a new concept in C#. Indexers enable a class object to function as an array.

Implementing indexers is similar to implementing properties using the get and set

functions. The only different is that when you call an indexer, you pass an indexing

parameter. Accessing an indexer is similar to accessing an array. Indexers are nameless,

so the this keyword declares indexers.

I just said that after defining indexers, a class object could be treated as an array. What

does that mean? To explain, I‘ll show you an example using the class called my class.

The way you treat an instance of myClass now is like this:

myClass cls = new myClass();

cls.MaleGender = true;

After defining an indexer in myClass, you could treat an instance of it as if it were an

array:

myClass cls = new myClass();

cls[0].MaleGender = true;

cls[1].MaleGender = true;

You define indexer by using the this keyword as if were an array property of type object.

Listing 36 shows the indexer signature of my class.

Listing 36. Indexers of myClass

public object this[int index]

{

get

{

if (! ValidIndex(index))

throw new Exception("Index out of range.");

else

return MaleGender(index).Value;

}

set

{

if (!ValidIndex(index))

throw new Exception("Index out of range.");

else

MaleGender(index).Value = value;

}

}

15. Inheritance

Inheritance is one of the main features of an object-oriented language. C# and the .NET

class library are heavily based on inheritance. The telltale sign of this is that all .NET

common library classes are derived from the object class, discussed at the beginning of

this article. As pointed out, C# doesn’t support multiple Inheritance. C# only supports

single inheritance; therefore, all objects are implicitly derived from the object class.

Implementing inheritance in C# is similar to implementing it in C++. You use a colon (:)

in the definition of a class to derive it from another class. In listing37, BaseClassB, which

later accesses the BaseClassA method in the Main method.

Listing 37. Inheritance example

using System;

// Base class A

class BaseClassA

{

 public void MethodA()

 {

 Console.WriteLine("A Method called");

 }

}

// Base class B is derived from Base class A

class BaseClassB:BaseClassA

{

public void MethodB()

{

Console.WriteLine("B method called");

}

}

class myClass

{

static void Main()

{

// Base class B

BaseClassB b = new BaseClassB();

// Base class B method

b.MethodB();

// BaseClassA Method through BaseClassB

b.MethodA();

}

}

Note: The below sections will be updated in next version.

16. C# 2.0 Features

Here is a list of new features added to C# version 2.0.

1. Partial Classes

2. Static Classes

3. Property Accessor Accessibility Modifier

4. Nullable Types

5. Generics

6. Anonymous Methods

7. Iterators

8. Friend Assemblies

1. Partial Classes

Partial classes is one of the coolest feature added to C# language. Having partial classes

in the language provides programmers to write cleaner interfaces. A partial

class means "A single class can be defined in multiple physical files.". For example, I can

have a ClassA, which is defined in three different AFile.cs, BFile.cs, and CFile.cs physical

files.

Now you may ask why would I want that? Do you remember ASP.NET or Windows Forms

applications, where designer (Visual Studio IDE) generated code was written in a region

and your code will be added after that. When writing larger user interface driven

applications (for example Windows UI or Web UI), you may want to have user interfaces

related code in a file, some logic in a separate file and so on. Now using partial classes,

we can have designer generated code in a separate file, control event handlers in a

separate file, and rest of the code in a separate file.

2. Static Classes

C# 2.0 now supports static classes. Here are static classes properties.

 A static class cannot be instantiated. That means you cannot create an instance of

a static class using new operator.

 A static class is a sealed class. That means you cannot inherit any class from a

static class.

 A static class can have static members only. Having non-static member will

generate a compiler error.

 A static class is less resource consuming and faster to compile and execute.

Public static class MyStaticClass

{

Private static int myStaticVariable;

Public static int StaticVariable;

{

Get

{

 return myStaticVariable;

}

Set

{

 myStaticVariable = value;

}

}

Public static void Function()

{

}

}

3. Property Accessor Accessibility Modifier

C# 2.0 supports access modifiers for property accessor, which means now you can set

access levels to get and set accessors of a property. For example, I can write a property

something like this:

public string LoginName

{

 get { return loginName; }

 protected set { loginName = value; }

}

So now I can set LoginName property from any class derived from the class that has this

property but I won't be able to set this property from other classes. This feature was not

supported in previous version of C#.

I create a class called ABaseClass, which has LoginName property:

class ABaseClass

{

/// <summary>

/// Property Access Modifiers

/// </summary>

private string loginName;

/// <summary>

/// Login Name

/// </summary>

public string LoginName

{

get { return loginName; }

protected set { loginName = value; }

}

}

Now I create a new class, which is derived from ABaseClass and in this class I set set

LoginName property.

class ADerivedClass : ABaseClass

{

public void SetPrivateProperty()

{

base.LoginName = "mcb";

}

}

If I try to set the property value from other classes, I get the following error:

4. Nullable Types

One of the new features of C# 2.0 is nullable types. Now C# 2.0 allows you to assign null

values to premitive types such as int, long, and bool.

The following code shows how to define an integer as nullable type and checks if the

value of the integer is null or not.

/// <summary>

/// Nullable types

/// </summary>

public static void TestNullableTypes()

{

// Syntax to define nullable types

int? counter;

counter = 100;

if (counter != null)

{

// Assign null to an integer type

counter = null;

Console.WriteLine("Counter assigned null.");

}

else

{

Console.WriteLine("Counter cannot be assigned null.");

Console.ReadLine();

}

If you remove the "?" from int? counter, you will see a warning as following:

17. C# 3.0 Features

Updates will be in next version.

Summary

This article offered an overview of the new Microsoft language, C#. C# takes the best

features of many present day programming languages. You became familiar with some of

the language’s syntax. You learned how to write and compile your first command-line

program with the “Hello, C# World!” example. You also became familiar with classes and

their members, their scopes, and how to use them. You learned about some unique

features, such as events the indexers, which were not available in languages such as

C++. In the end of this article, you also saw the new advanced features added to version

2.0 and 3.0.

