
Operating System- CS604

Solution Assignment # 1
Spring 2011

 Marks: 20

Due Date

Your assignment must be uploaded before or on April 18, 2011

Objective

The objective of this assignment is to familiarize with the system calls.

Instructions

 Avoid Plagiarism. No marks will be given in case of cheating or copying from the
internet or from other students.

 Submit the assignment through your account on VULMS. No assignment will be
accepted through email after the due date.

 If you have any problem related to assignment, feel free to discuss it by email at
cs604@vu.edu.pk

Question # 1:

Read the following program carefully and write the output of the program. Explain each
line of code according to given numbering.

Output:

I have no child: 0

I AM VU: 0

I have no child: 1

I AM VU: 1

I have no child: 2

I AM VU: 2

I have no child: 3

I AM VU: 3

I have no child: 4

I AM VU: 4

Comment:

#include <stdio.h>
#include <unistd.h>

#include <stdlib.h>
#include <errno.h>

 1………………… int main (void)

The main function starts the program execution and returns int data type.
 {
 pid_t pid;
 2………………… pid = fork();

Fork () method is the system call and returns the integer value in the pid variable.
Generate a clone of the existing process.

 3………………… if (pid > 0)

Condition will be only true when fork returned the vale greater than zero. Means
fork is successful, a new process has been generated and parent process execution
starts.
 int i;
 4………………… for (i = 0; i < 5; i++)

Loop starts and from 0 to 4, loop run 5 times.

 {
 5………………… printf("I AM VU: %d\n", i);

Prints “I AM VU” message on the screen and also print the value of variable “i”.

 6………………… sleep(1);

Sleep function suspend the execution for one second each time.

 }
 exit(0);
 }
 7………………… else if (pid == 0)

When fork () returns 0 in child process. The execution of the child process starts.
 {
 int j;
 for (j = 0; j < 5; j++)
 {
 8………………… printf("I have no child: %d\n", j);

A message “I have no child” is printed on the screen and also print the value of
variable “j”.

 sleep(1);
 }
 _exit(0);
 }
 else
 {
 9………………… fprintf(stderr, "can't fork, error %d\n", errno);

This means fork has failed , (due to standard error ,so it has returned -1. it print
message “can't fork, error” and print the error number.

 10………………… exit (EXIT_FAILURE);

System call terminates the process abnormally as it fails. Exit function indicates
unsuccessful program completion. Using the macro Exit_Failure

 }
 }

#include <stdio.h> /* printf, stderr, fprintf */
#include <unistd.h> /* _exit, fork */
#include <stdlib.h> /* exit */
#include <errno.h> /* errno */

int main(void)
{
 pid_t pid;

 /* Output from both the child and the parent process
 * will be written to the standard output,
 * as they both run at the same time.
 */
 pid = fork();
 if (pid == 0)
 {
 /* Child process:
 * When fork() returns 0, we are in
 * the child process.
 * Here we count up to ten, one each second.
 */
 int j;
 for (j = 0; j < 10; j++)
 {
 printf("child: %d\n", j);
 sleep(1);
 }
 _exit(0); /* Note that we do not use exit() */
 }
 else if (pid > 0)
 {
 /* Parent process:
 * When fork() returns a positive number, we are in the parent
process
 * (the fork return value is the PID of the newly-created child
process).
 * Again we count up to ten.
 */
 int i;
 for (i = 0; i < 10; i++)
 {
 printf("parent: %d\n", i);
 sleep(1);
 }
 exit(0);
 }
 else
 {
 /* Error:
 * When fork() returns a negative number, an error happened
 * (for example, number of processes reached the limit).
 */
 fprintf(stderr, "can't fork, error %d\n", errno);
 exit(EXIT_FAILURE);
 }
}

