Solution Assignment # 1:
CS 508

Due Date:
Your assignment must be uploaded/submitted before or on 31st OCT 2011.
Q # 1: Write a program that encodes messages by some simple character replacement (for example, replace A by Z, B by Y, etc.). Include punctuation in the encoding.

[10]

€ TRIM = 1

IN =
‘ABCDEFGHIJKLMNOPQRSTUVWXYZ, . : ; ?0123456789+-*/a~'

CODE =
'0123456789+-*/a~ ABCDEFGHIJKLMNOPQRSTUVWXYZ YZ, . : ; ! ?’
 READ OUTPUT = REPLACE (INPUT, IN, CODE)
: S (READ)
END

Q# 2: In order to evaluate and compare different languages, we need some mechanism for their evaluation. The first criterion that comes to mind is: how long it takes to develop a program in a given programming language. On what basis the productivity of language is measured in function point, elaborate your answer with respect to some suitable example.

[10]
 Solution:
The standard economic definition of productivity is, "Goods or services produced per unit of labor and expense." Until 1979, when A.J. Albrecht of IBM published his Function Point metric, there was never a software definition of exactly what "goods or services" were the outputs of a software project. The previous metric for software was "cost per line of source code," which unfortunately does not correlate at all to the economic definition of productivity. All manufacturing managers understand that if a manufacturing process involves a substantial percentage of fixed costs, and there is a decline in the number of units manufactured, then the cost per unit must go up. Software, as it turns out, involves a substantial percentage of fixed or inelastic costs that are not associated with coding. When more powerful programming languages are used, the result is to reduce the number of "units" that must be produced for a given program or system. However, the requirements, specifications, user documents, and many other cost elements tend to behave like fixed costs, and hence cause metrics such as "cost per line of source code" to move paradoxically upwards instead of downwards. That is why new programming languages were introduced like 4th generation languages (4GL). All 4GLs are designed to reduce programming effort, the time it takes to develop software, and the cost of software development. They are not always successful in this task, sometimes resulting in inelegant and un-maintainable code. A quantitative definition of 4GL has been set by Capers Jones, as part of his work on function point analysis. Jones defines the various generations of programming languages in terms of developer productivity, measured in function points per staff-month. A 4GL is defined as a language that supports 12–20 FP/SM. This correlates with about 16–27 lines of code per function point implemented in a 4GL.
