
Fundamentals of Algorithms 
CS502-Fall 2011 

 
SOLUTION ASSIGNMENT #2 

Deadline 
 
Your assignment must be uploaded/submitted at or before 21stNov. 2011 

Uploading instructions 
 
Please view the assignment submission process document provided to you by 

the Virtual University to upload the assignment. 

Rules for Marking 
 
It should be clear that your assignment will not get any credit if: 

 

oThe assignment is submitted after due date. 

oThe submitted assignment does not open or run.  

oThe assignment is copied. 

Objectives 
 
This assignment will help you to understand the concept of recurrence relations and way 
to solve then and writing asymptotic notation after analyzing and solving recurrences 
.The other main focus is to learn  dynamic programming applications and edit distance 
problem solution using dynamic programming  technique which will be ultimately 
enhance your vision and logics to think critically and analytically.  

Guidelines 
1. In order to attempt this assignment you should have full command on Lecture #5-9   

and  Lecture # 15-16 

2. In order to solve this assignment you have strong concepts about following topics 

 Recurrence Relations and growth rate of the functions  
 Radix sort 

 
3. Normally these formulas are very handy: 



If zx y =  then zy xlog=  
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Some basic information for solving assignment question 1 is given below. 
Growth Rate of Function: 
If some function f1(n)>f2(n) for positive values of x then the function f1(x) is said to have 
greater growth rate then f2(x). For example f1(n)=n100  and f2(n)= n99  it is obvious that 
f1(x) has greater growth rate ( 2100 > 299).This concept relate to complexity of algorithm 
,an algorithm having greater growth rate function  means the algorithm has greater 
complexity here f1(x) is more complex then f2(x).  

 
 
 
Books to read for solution 

Cormen, Leiserson, Rivest, and Stein (CLRS) 2001, Introduction to Algorithms, (2nd ed.) 
McGraw Hill. 

 
Estimated Time  3.5  hours 
Your concepts and logics will take actual measure of time ;however first question 
should not take more than 2 hour and for question 2 you may solve in 1.5 hours It 
all depends upon your sheer concentration. 

 

 
 
 
 
 
 
 
 
 



 
 
Question# 1                   (10) 
Arrange the following in the Least to Most complexity order. Here “n “is the input size 
for the some complexity function and j< k and j & k are numbers greater than 2.Every 
function is separated by “comma” and note these are 20 functions to arrange.  
 

27

2 94

311

12j/46k/2 n n nn/10000, 10n , n , nlgn, n ,  1000000000,  2  , n  lgn,  n!,  (2 n n )/ n ,
nn!/ n , 2 nlogn/ n , n!/logn, 1000000, n / n ,n(logn) n ,

n nn / n , n(logn) n , k ,  j
 
Hints toward solution   
 

• Think in more general way. 
• If you feel difficulty for comparison then judge for lager inputs say 10010  etc. 

• Note n2  and n! are both complex but you can judge that n! is more complex by 
putting values of  larger “n” . 

• Further n! in generic terms also beats functions like n nk ,  j  although it feels very 
strange for large values of “j” and “k” but the core point need to be remembered 
that taking the “j” and “k” very large will become constant for particular scenario 
and we have “variable ” “n” and there will time come when “n” becomes so large 
as then ordinary imagination then “n!” will beat so we consider “n!” more 

complex then the  functions n nk ,  j  .AND if some students have assumed the 
alternate then partial  marks will be rewarded for their thinking. 

Note: Here one amazing thing the most complex one function is of the nature nn  
factorial definition and its expansion shows the results: 
n! =n (n-1)(n-2)………..2.3.1. 
While 
 nn = n (n)(n)……………n which will obviously beat n!   
Think for the vision enhancements and think beyond the boundaries. 
 
 
 
 
 
 
 

 



 
Given Order  Least to Most  Complexity 

Arrangements 

Hints  

 
n/10000  

 

1000000  Fixed values are considered 

efficient as for very large “n” 

these become so small. 

 
6k/210n  

 

1000000000 

 

 
12j/4n  

 
7 n  lgn  

 

Think as if  

( n n =n)< 7 n  lgn  as here 

both terms are less than n  

 

nlgn  

 

nlgn  

 

 

 
nn  

4n / n  

 

 

 

 

 

1000000000 

 

 
11n / n  

Note here the dividing factor 

is small than 
4 n  That’s why answer will 

be larger as compared to 

above one.  
n2  
 

 
n/10000  

Although for small values of 

“n” it looks efficient than 

above ones but when we 

increase the size at larger 

extent it is at its true place i. e.  

find such “n” where 
11 n >10000 

 
7 n  lgn  

 
9n(logn) n  

 

 

 
n!  

 
3n(logn) n  

 

obviously as 
9 n < 3 n  



       

 
2n(2 n n )/ n  

        

                12j/4n   

As j<k and note here what 

ever the value of “j” or  “k” 

will be taken it will become 

constant then the variable “n” 

for very large values of “n” 

you can compare the 

complexities of these with 

other functions 

 

       n!/ n  

 
6k/210n  

 

 
2n2 nlogn/ n  

 
n2  

 

 
n!/logn  

2n2 nlogn/ n  

 

 

 

 

1000000 

2n(2 n n )/ n  

 

 

4n / n  

 

nj  

 

As “j ” and “k ” are greater 

than “2” 
9n(logn) n  

 

nk  
 

 

 

 

 
11n / n  

 

n!/ n  

 

  

 
3n(logn) n  

 
n!/logn  

As divider function is smaller 

i.e. 

n > logn  
nk  
 

n!   

 
nj  

nn   



 
 

 
 

 

Question# 2                   (10) 
Carry out the radix sort on the following five digits numbers and also develop  
complexities function and then write worst case Theta  

Θ 
notation for the radix sort algorithm. 

45141,16545,11478,12196,12133,21322,31422,31511,11262,27210 

 

Solution table stepwise: 

 
Input 1st 

Iteration 

2nd 

Iteration 

3rd 

Iteration 

4th 

Iteration 

Fifth 

iteration 

output 

45141 2721[0] 272[1]0 12[1]33 1[1]262   [1]1262   11262   

16545, 4514[1] 315[1]1 12[1]96 2[1]322 [1]1478 11478 

11478, 3151[1] 213[2]2 45[1]41 3[1]422 [1]2133 12133 

12196, 2132[2] 314[2]2 27[2]10 1[1]478 [1]2196 12196 

12133, 3142[2] 121[3]3 11[2]62   3[1]511 [1]6545 16545 

21322, 1126[2] 451[4]1 21[3]22 1[2]133 [2]1322 21322 

31422, 1213[3] 165[4]5 31[4]22 1[2]196 [2]7210 27210 

31511, 1654[5] 112[6]2   11[4]78 4[5]141 [3]1422 31422 

11262, 1219[6] 114[7]8 31[5]11 1[6]545 [3]1511 31511 

27210 1147[8] 121[9]6 16[5]45 2[7]210 [4]5141 45141 

    

 

 

 

 

 

 

 

 

 

 



 

 

 

Radix-Sort 

A stable sort algorithm for sorting elements with d digits keys, where each digit is in 
base b, meaning in the range [0,b-1].  
 
The algorithm uses a stable sort algorithm to sort the keys according to each digit 
starting with the least significant digit (rightmost). 
 
Radix-Sort(A[1..n]) 
    for i ← 1 to d 
         Use stable sort to sort A on digit i 

Analysis of  Algorithim  
Run-time Complexity:  
Assuming the stable sort runs in O(n+b) (such as counting sort) the running time is 
O(d(n+b)) = O(dn+db). And average case analysis is also Θ(d(n+b)) but  
If d is constant and b=O(n), the running time is O(n). 

 

 

 
 

 


