
Fundamentals of Algorithms
CS502-Fall 2011

SOLUTION ASSIGNMENT #2

Deadline

Your assignment must be uploaded/submitted at or before 21stNov. 2011

Uploading instructions

Please view the assignment submission process document provided to you by

the Virtual University to upload the assignment.

Rules for Marking

It should be clear that your assignment will not get any credit if:

oThe assignment is submitted after due date.

oThe submitted assignment does not open or run.

oThe assignment is copied.

Objectives

This assignment will help you to understand the concept of recurrence relations and way
to solve then and writing asymptotic notation after analyzing and solving recurrences
.The other main focus is to learn dynamic programming applications and edit distance
problem solution using dynamic programming technique which will be ultimately
enhance your vision and logics to think critically and analytically.

Guidelines
1. In order to attempt this assignment you should have full command on Lecture #5-9

and Lecture # 15-16

2. In order to solve this assignment you have strong concepts about following topics

 Recurrence Relations and growth rate of the functions
 Radix sort

3. Normally these formulas are very handy:

If zx y = then zy xlog=

Also

)(
2 1

1
n

n

i
i aana +=∑

=
)1(

21
+=∑

=

nni
n

i
 r

rr
mm

k

k

−
−

=
+

=
∑ 1

1 1

0

1)nfor (
6

)12)(1(
1

2 >=
++

=∑
=

nnni
n

i

Some basic information for solving assignment question 1 is given below.
Growth Rate of Function:
If some function f1(n)>f2(n) for positive values of x then the function f1(x) is said to have
greater growth rate then f2(x). For example f1(n)=n100 and f2(n)= n99 it is obvious that
f1(x) has greater growth rate (2100 > 299).This concept relate to complexity of algorithm
,an algorithm having greater growth rate function means the algorithm has greater
complexity here f1(x) is more complex then f2(x).

Books to read for solution

Cormen, Leiserson, Rivest, and Stein (CLRS) 2001, Introduction to Algorithms, (2nd ed.)
McGraw Hill.

Estimated Time 3.5 hours
Your concepts and logics will take actual measure of time ;however first question
should not take more than 2 hour and for question 2 you may solve in 1.5 hours It
all depends upon your sheer concentration.

Question# 1 (10)
Arrange the following in the Least to Most complexity order. Here “n “is the input size
for the some complexity function and j< k and j & k are numbers greater than 2.Every
function is separated by “comma” and note these are 20 functions to arrange.

27

2 94

311

12j/46k/2 n n nn/10000, 10n , n , nlgn, n , 1000000000, 2 , n lgn, n!, (2 n n)/ n ,
nn!/ n , 2 nlogn/ n , n!/logn, 1000000, n / n ,n(logn) n ,

n nn / n , n(logn) n , k , j

Hints toward solution

• Think in more general way.
• If you feel difficulty for comparison then judge for lager inputs say 10010 etc.

• Note n2 and n! are both complex but you can judge that n! is more complex by
putting values of larger “n” .

• Further n! in generic terms also beats functions like n nk , j although it feels very
strange for large values of “j” and “k” but the core point need to be remembered
that taking the “j” and “k” very large will become constant for particular scenario
and we have “variable ” “n” and there will time come when “n” becomes so large
as then ordinary imagination then “n!” will beat so we consider “n!” more

complex then the functions n nk , j .AND if some students have assumed the
alternate then partial marks will be rewarded for their thinking.

Note: Here one amazing thing the most complex one function is of the nature nn
factorial definition and its expansion shows the results:
n! =n (n-1)(n-2)………..2.3.1.
While
 nn = n (n)(n)……………n which will obviously beat n!
Think for the vision enhancements and think beyond the boundaries.

Given Order Least to Most Complexity

Arrangements

Hints

n/10000

1000000 Fixed values are considered

efficient as for very large “n”

these become so small.

6k/210n

1000000000

12j/4n

7 n lgn

Think as if

(n n =n)< 7 n lgn as here

both terms are less than n

nlgn

nlgn

nn

4n / n

1000000000

11n / n

Note here the dividing factor

is small than
4 n That’s why answer will

be larger as compared to

above one.
n2

n/10000

Although for small values of

“n” it looks efficient than

above ones but when we

increase the size at larger

extent it is at its true place i. e.

find such “n” where
11 n >10000

7 n lgn

9n(logn) n

n!

3n(logn) n

obviously as
9 n < 3 n

2n(2 n n)/ n

 12j/4n

As j<k and note here what

ever the value of “j” or “k”

will be taken it will become

constant then the variable “n”

for very large values of “n”

you can compare the

complexities of these with

other functions

 n!/ n

6k/210n

2n2 nlogn/ n

n2

n!/logn

2n2 nlogn/ n

1000000

2n(2 n n)/ n

4n / n

nj

As “j ” and “k ” are greater

than “2”
9n(logn) n

nk

11n / n

n!/ n

3n(logn) n

n!/logn

As divider function is smaller

i.e.

n > logn
nk

n!

nj

nn

Question# 2 (10)
Carry out the radix sort on the following five digits numbers and also develop
complexities function and then write worst case Theta

Θ
notation for the radix sort algorithm.

45141,16545,11478,12196,12133,21322,31422,31511,11262,27210

Solution table stepwise:

Input 1st

Iteration

2nd

Iteration

3rd

Iteration

4th

Iteration

Fifth

iteration

output

45141 2721[0] 272[1]0 12[1]33 1[1]262 [1]1262 11262

16545, 4514[1] 315[1]1 12[1]96 2[1]322 [1]1478 11478

11478, 3151[1] 213[2]2 45[1]41 3[1]422 [1]2133 12133

12196, 2132[2] 314[2]2 27[2]10 1[1]478 [1]2196 12196

12133, 3142[2] 121[3]3 11[2]62 3[1]511 [1]6545 16545

21322, 1126[2] 451[4]1 21[3]22 1[2]133 [2]1322 21322

31422, 1213[3] 165[4]5 31[4]22 1[2]196 [2]7210 27210

31511, 1654[5] 112[6]2 11[4]78 4[5]141 [3]1422 31422

11262, 1219[6] 114[7]8 31[5]11 1[6]545 [3]1511 31511

27210 1147[8] 121[9]6 16[5]45 2[7]210 [4]5141 45141

Radix-Sort

A stable sort algorithm for sorting elements with d digits keys, where each digit is in
base b, meaning in the range [0,b-1].

The algorithm uses a stable sort algorithm to sort the keys according to each digit
starting with the least significant digit (rightmost).

Radix-Sort(A[1..n])
 for i ← 1 to d
 Use stable sort to sort A on digit i

Analysis of Algorithim
Run-time Complexity:
Assuming the stable sort runs in O(n+b) (such as counting sort) the running time is
O(d(n+b)) = O(dn+db). And average case analysis is also Θ(d(n+b)) but
If d is constant and b=O(n), the running time is O(n).

